Assessing Global Change Impact on the US Using National Lightning Data

National Climate Assessment PI Meeting April 8-9, 2014

Dr. William Koshak Earth Science Office, NASA Marshall Space Flight Center

Other contributors: Ken Cummins (UA), D. Buechler (UAH), B. Vant-Hull (CCNY), R. Blakeslee (NASA/MSFC), E. Williams (MIT), H. Peterson (USRA)

Overview of Project Goals

Develop <u>Assessment Capabilities & Products</u> to monitor, quantify, and provide alerts of climate-induced changes in lightning, and resulting impacts:

Evaluate the Sensitivity of <u>Lightning Characteristics</u> to Climate Change

- o lightning flash counts
- o peak return stroke current
- multiplicity (# strokes per flash)
- lightning nitrogen oxides (LNOx)
- o diurnal variations (counts, peak current)

Determine & Examine Lightning-Caused <u>Impacts</u> to Several Economic Sectors

- Human Health (lightning-caused injury/death)
- Agriculture (lightning-caused crop damage)
- Forestry (lightning-caused wildland fires)
- Personal Property (lightning-caused personal property damage)

Achievement of Goals

□ Lightning Analysis Tool (LAT) Developed & Applied

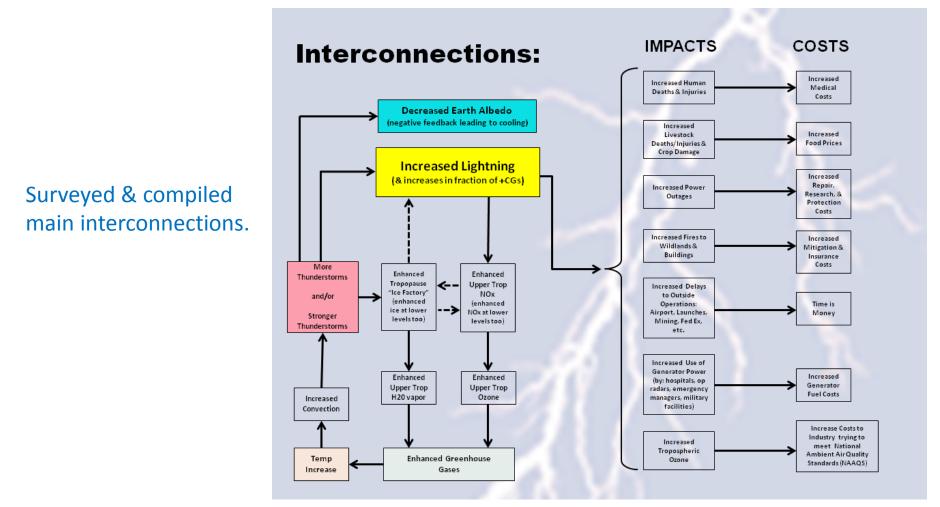
A sustaining assessment tool that provides the assessment capabilities & products for monitoring climate-induced changes in lightning characteristics, and lightning impacts.

Gamma Science Results Discussed in:

- Journal Articles
 - <u>Koshak, W. J.</u>, K. L. Cummins, D. E. Buechler, B. Vant-Hull, R. Blakeslee, E. R. Williams, and H. S. Peterson, Variability of CONUS Lightning in 2003-2012 and Associated Impacts, submitted to *J. Appl. Meteorol. & Climatol.*, 2014.
 - Chronis, T., R. Said, K. Cummins, <u>W. Koshak</u>, E. McCaul, E. Williams, G. Stano, and M. Grant, Climatological Diurnal Variation of CG Lightning Peak Current, submitted to *Geophys. Res. Lett.*, 2014.

> Conference Paper

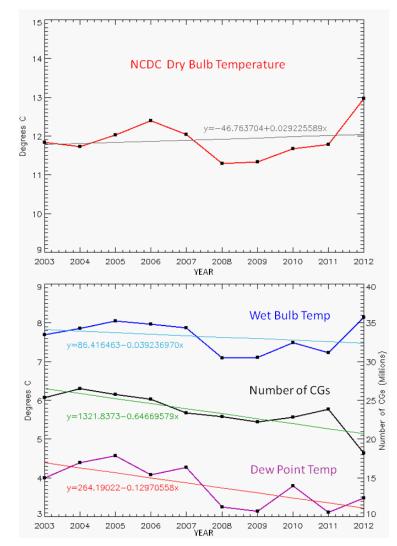
- <u>Koshak, W. J.</u>, B. Vant-Hull, E. W. McCaul, and H. S. Peterson, Variation of a Lightning NOx Indicator for National Climate Assessment , *International Conference on Atmospheric Electricity*, June, 2014.
- > Book Chapter
 - <u>Koshak, W. J.</u>, Global Lightning Nitrogen Oxides Production, to appear in Chapter 19 of the upcoming 2nd edition of <u>The Lightning Flash</u>, editor Vernon Cooray, IEE Power & Energy Series.


Examined all upgrades to national lightning network.

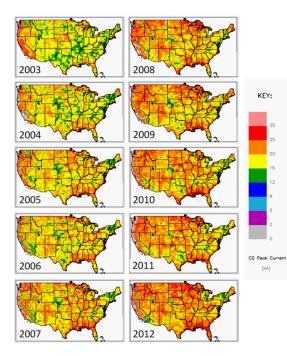
Only +CG multiplicity affected.

National Lightning Detection Network Upgrades

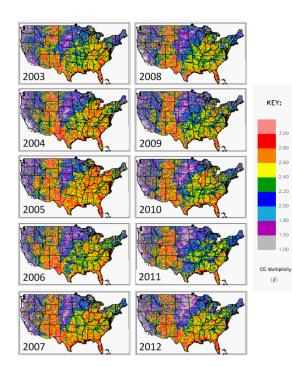
- O 2002-2003 Upgrade (all sensors replaced w/new IMPACT-ESPs + 8 sensors added)
- o 2004 Propagation Model Upgrade (increases peak current values)
- o 2006 Sensor Addition Upgrade (2 sensors added SE of Florida)
- 2006 E-Field Waveform Detection Criteria Upgrade (short PTZ waveforms admitted to allow limited IC detection; increases CG count but some are cloud flashes)
- o 2006 15kA Rule Upgrade (no effect since already accounted for)
- o 2008 Location Algorithm Upgrade (extend range to offshore & N. Mexico)
- o 2008 Duplicate/Misplaced Events Upgrade (improvements in removing these)
- o 2011-2012 Upgrade to LS7001 Sensors (appropriately decreases +CG multiplicity)

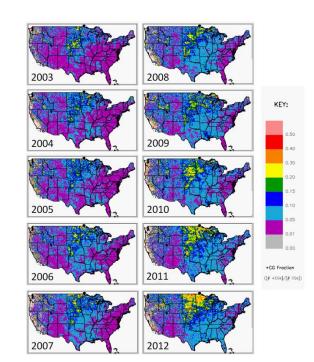


Found that CG lightning is decreasing!

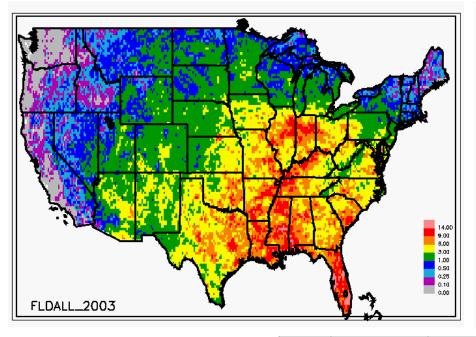

Why does CG lightning <u>drop</u> by 12.8% when T is trending <u>up</u>?

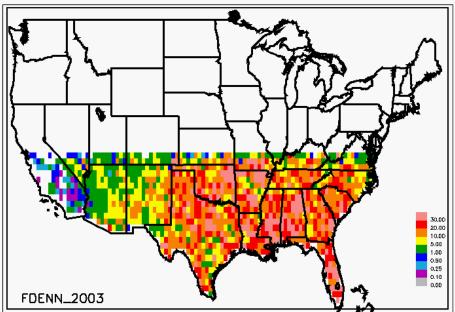
Answer: Lightning needs heat <u>& moisture</u>. So use long-term Tw (instead of T) to obtain positive correlation.




CG peak current up by 8.0%

CG multiplicity down by 4.1%


Fraction of +CGs up by 41.5%

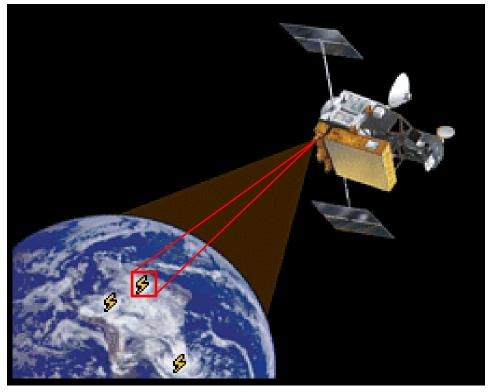


NLDN Flash Density (2003-2012)

LIS Flash Density (2003-2012)

Compared CGs to	
total lightning from	LIS

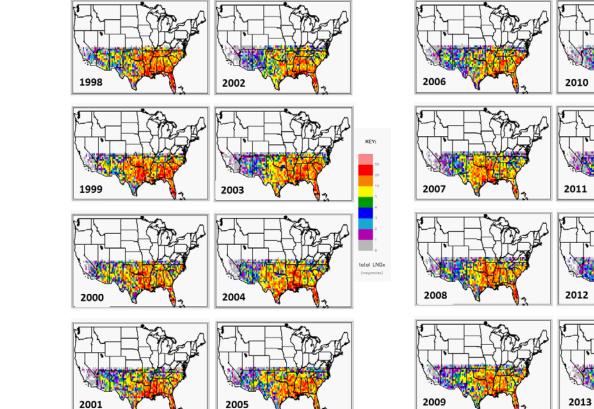
Year	NLDN	LIS	LIS
		(Raw)	(DE & VT Corrected)
2003	25,312,151	100,090	50,435,202
2004	26,515,549	100,695	51,831,376
2005	25,733,836	96,522	47,837,176
2006	25,110,025	78,787	40,511,787
2007	23,350,168	87,181	44,373,486
2008	22,888,321	90,307	44,772,072
2009	22,233,574	95,793	48,724,951
2010	22,793,791	93,751	49,250,190
2011	23,825,025	96,680	48,989,029
2012	18,192,183	86,766	44,139,720

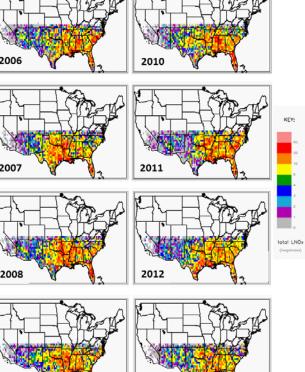

Significant Challenge! Wanted to go beyond the simple Lightning NOx Indicator

$$\mathrm{LNI} = \sum_{i=1}^{N} A_i B_i \quad .$$

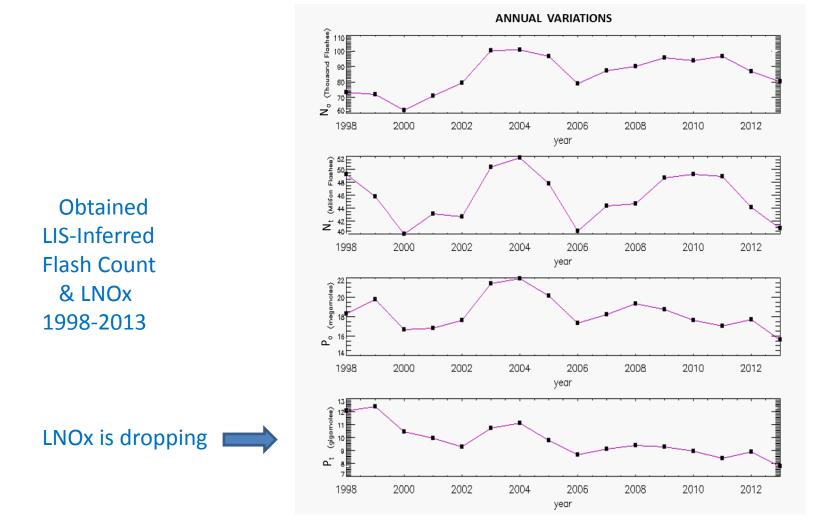
Solution:

Derived a way to use TRMM/LIS data to estimate <u>flash energy</u> and then convert this energy to Lightning NOx Production *P*.


 \boldsymbol{p}



Lightning Nitrogen Oxides (LNOx) affect greenhouse gases & hence climate.


$$=\sum_{k=1}^{N_o} P_k + N_u \left(\frac{1}{N_o} \sum_{k=1}^{N_o} P_k\right) \quad , \qquad P_k = \frac{CYA\Delta\lambda}{\beta N_A} \sum_{i=1}^{m_k} \sum_{j=1}^{n_k} \left[\frac{a_{jk} \cos \alpha_{jk}}{r_{jk}^2}\right] \overline{\xi}_{\lambda i j k}$$

Obtained LIS-inferred LNOx 1998-2013 (megamoles)

W. Koshak, NASA/MSFC ZP11

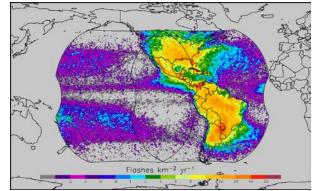
Completed Assessment of Climate-Induced Changes in CG Lightning-Caused Impacts. Sensitivity $= \frac{\partial I}{\partial T_w} = \frac{\partial I}{\partial N} \frac{\partial N}{\partial T_w}$

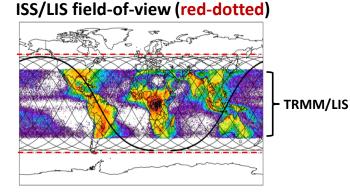
I = Impact to a Sector N = CG Lightning Count $T_w =$ Wet-Bulb Temperature

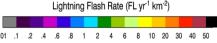
Human Health Fatalities: 13.7 deaths/°C Injuries: 85.4 injuries/°C Agriculture Crop Damage: \$63,198/°C Personal Property Homeowners Insurance Claims: \$367.3M/°C Forestry Wildfires (number): 4158/°C Wildfires (acres): 1.2M/°C

Future Evolution & Benefits

Employ GOES-R Geostationary Lightning Mapper (GLM) Data


- o Launch early 2016.
- Offers <u>continuous</u> monitoring of total lightning over all of CONUS.
- Data will be implemented into this project's Lightning Analysis Tool (LAT) for NCA studies.
- Will apply LNOx production *P* equation for improved (i.e. <u>continuous</u>) LNOx monitoring.


Employ International Space Station Lightning Imaging Sensor (ISS/LIS) Data


- o Launch early 2016.
- Views all of CONUS (TRMM/LIS only up to 38°N).
- Data will be implemented into this project's Lightning Analysis Tool (LAT) for NCA studies.
- Will apply LNOx production *P* equation for improved & cross-sensor LNOx monitoring.

... Present NCA work represents important preparation & proving ground for analyzing these future data!

GLM field-of-view (East park better)

User Community & Decision Makers

Chattanooga Hamilton County Air Pollution Bureau

- Address: 6125 Preservation Dr, Chattanooga, TN 37416.
- Monitors Air Quality, and proceeds with enforcement actions if air quality violations are determined.

Point-Of-Contact

- Kathy Jones Air Monitoring Manager.
- She would like to know better to what extent ozone exceedances are attributable to lightning.

Sample of Jone's estimates of lightning-caused exceedances ... but desire is to improve accuracy of these analyses.

OZONE	Exceedance of 75 STD 8-Hour		Association with Significant Lightnin
2012			
June 28-July 1	Yes		Yes
2011			
June 7, 8	Yes		No
August 17,18	Yes		No
September 2	Yes		No
2010			
May 5,6	Yes		No
April 2	No	Day before	Yes
April 13,14	Yes		Yesfor 4/14
August 4	Yes		Yes
August 10,11	Yes		Yes
September 15	Yes		No
2009			
March 22,23	No		No
April 9	No		Yesfor 4/10
June 1,2	Yes		Yes
August 7	No		Yes
June 25, 26	No	-	Yes
2008			
June 25	Yes		No- West of Chatt
July 18,19	Yes		No-West of Chatt
August 4	Yes	Day Before	Some
August 19	Yes	Day Before	Some

User Community & Decision Makers (cont.)

□ Harpeth Valley Utilities District

- o Address: 5838 River Road, Nashville, TN 37209
- Serves the water and wastewater needs of customers in portions of Davidson, Williamson and Cheatham counties.
- Provides water service to more than 16,000 customers and wastewater service to more than 13,000 customers.
- Over eight billion gallons of drinking water pumped per year.
- o 385+ miles of drinking water lines in place
- When storms approach they switch to generator power. Power outage due to lightning stops service pumps producing large water pressure gradients that bust water lines.

Point-of-Contact

- Kevin Snider Engineer Technician.
- He would like more lightning data/statistics to better prepare for lightning, and avoid turning on generator power when possible ... for cost savings.

Thank You !

