

Task Force on Hemispheric Transport of Air Pollution

TF HTAP and NASA Earth Science: An International Science/Policy Application

Task Force Co-Chairs

Terry J. Keating U.S. EPA André Zuber

European Commission

http://www.htap.org

Overview of Presentation

- Introduction to the LRTAP Convention & TF Hemispheric Transport of Air Pollution
- Overview of TF HTAP Assessment & Cooperative Research Activities
- Some Needs and Opportunities

CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION

- Adopted in 1979, the first multi-lateral agreement on air pollution
- Created a framework on which has been built eight Protocols, all in force as of May 2005.
- The Protocols have aimed to increase ambition levels in a stepwise manner.
- Day to day activities supported by a Secretariat at the UN Economic Commission for Europe
- http://www.unece.org/env/lrtap/

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE

CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION

51 Parties in Europe, North America and Central Asia

Task Force on Hemispheric Transport of Air Pollution

The Task Force is charged to "plan and conduct the technical work necessary to:

- develop a fuller understanding of the hemispheric transport of air pollution ...
- estimate the hemispheric transport of specific air pollutants for the use in reviews of protocols to the Convention
- prepare technical reviews thereon for submission to the Steering Body of EMEP"

The Task Force is encouraged to engage relevant experts from non-UNECE countries.

Policy-Relevant Science Questions

- 1. How does hemispheric transport affect air pollution?
- 2. How much do emissions in one country or region affect air pollution in another country or region?
- 3. How confident are we of the results and what is our best estimate of the uncertainties?
- 4. How will changes in emissions in one country or region affect air pollution in another country or region?
- 5. How may the source-receptor relationships change over the next 20 to 50 years due to changes in emissions?
- 6. How may the source-receptor relationships change due to climate change?
- 7. What efforts are needed to develop an integrated system of observation data and models?

Introduction to TF HTAP A Path to a 2009 Assessment

Focused Workshops

TF Meetings

Building Consensus

Reviewing Results, Planning

2005 June			Science Questions, <i>Brussels</i>
2006 Jan	New Research	Modeling, Washington	
June	& Report Writing		Hg/POPs, CH ₄ , <i>Moscow</i>
Oct	-	Emissions, <i>Beijing</i>	
2007 Jan		Integrated Observations Geneva	δ,
May- June			Interim Report to Protocol Review, Climate, <i>Reading</i>
Oct		Modeling, <i>Jülich</i>	
2008 Jan			[<i>U.S</i> .]
May		[POPs/Hg, <i>Rome</i>]	
Oct		[Tropics, <i>Asia</i>]?	
2009 Jan		?	
June	1 st Assessment Report		?

TF HTAP Assessment Products

2009 Assessment Report

- State of knowledge concerning intercontinental transport of air pollutants in the Northern Hemisphere
- Covering all pollutants of interest under the LRTAP Convention
- Addressing identified policy-relevant science questions

2007 Interim Report

- Significance of intercontinental transport of air pollutants within the Northern Hemisphere for attaining the objectives of the 1999 Gothenburg Protocol
- Comments accepted until 1 July 2007

TF HTAP Cooperative Activities

Advancing Our Understanding

- Model Intercomparison and Evaluation
- Emissions Inventories
- Integrated Observations

Model Intercomparison Experiment Set-Up

http://aqm.jrc.it/HTAP/

APPROACH:

Base simulation with 3-D models

- \rightarrow horizontal resolution of 4°x5° or finer
- \rightarrow 2001 meteorology
- \rightarrow each group's best estimate for emissions in 2001
- \rightarrow methane set to a uniform value of 1760 ppb

Model experiments

Set 1: source-receptor simulations

20% reduction of global methane, 20% emission reduction of NOx, CO, NMVOC or combined in 4 geographical regions

Set 2: transport and process studies

All models use common emissions and fixed global uniform lifetime. Pulse experiments, "transition to reality"

Set 3: detailed analysis of field campaigns

Specific runs for NASA GTE TRACE-P and ICARTT/INTEX field experiments

Set 4: final source-receptor studies

To be determined

Experiment status

- 20 models participated in SR1
- 15 models ran SR2-SR6 scenarios
- ▶ 10 models ran TP1

All model output stored on HTAP server in Jülich (htap.icg.kfajuelich.de) – 27 accounts created

Output includes monthly mean fields and hourly surface data

Server disk space (1 TByte) filled to 65%

- SR series completed (but remains open as community benchmark and for 2009 assessment)
- TP1 almost completed new efforts should be directed to TP1x
- TP2 and TP3 to be started by August 2007
- Discussion on Experiment and Analysis Design on http://icg-ii-wikis.icg.fz-juelich.de/HTAPWiki/

Timeline 2006-2009 for coordinated model studies

Experiment	2006	2007	2008	2009
Experiment Set 1: Source-Receptor experiment				
1.1 Define experiment, prepare input/output				
1.2 Run experiments				
1.3 Analyse experiment for Interim report in 2007				
INTERIM REPORT				
Experiment Set 2: Artificial Tracer experiment				
2.1 Define experiment, prepare input/output				
2.2 Run experiments				
2.3 Analyse experiment for publication together with				
Experiment Set 3: Parallel detailed experiments for				
Mercury, Ozone, Aerosols, linkage to campaigns				
3.1 Define experiment, prepare input/output				
3.2 Run experiments		_		
3.3 Analyse experiment for publication				
Experiment Set 4: Further assessment of uncertainties in				
source receptor relationships including future emission				
scenarios				
4.1 Define experiment, prepare input/output				
4.2 Run experiments				
4.3 Analyse experiment for Assessment report				
4.4 Publish scientific results				
TF HTAP ASSESSMENT REPORT				

TFHTAP Modelling workshop October

TFHTAP Workshop on Global and Regional Modelling for Assessing Hemispheric Air Pollution

> Forschungszentrum Jülich Leo-Brandt-Str. 13 Jülich, Germany 17 – 19 October 2007

Discuss results

Complete planning of remaining model experiments

TF HTAP Cooperative Activities

Emission Inventories

- Workshop, October 2006, Beijing
- Need to update global emissions inventories using national and sub-national data
 - EDGAR-HTAP, JRC Ispra
- Need to utilize satellite observations and other observations to evaluate inventories
- Need to develop future scenarios

 with IPCC and IGAC/WCRP AC&C Projects

TF HTAP Cooperative Activities

Integrated Observations

- Workshop, January 2007, Geneva – Joint with WMO and GEO Secretariat
- Need to integrate observations from different platforms to understand observed trends
- Need to establish a reference multi-platform observational database for model evaluation
 - Surface Networks
 - EC DG Environment Open Call
 - Aircraft Campaigns
 - Model Intercomparison Experiment Set 3
 - Satellite Observations

TF HTAP Needs and Opportunities

Where can NASA Expertise be Applied?

- 2007 and 2009 Assessment Reports
- Model Intercomparison Exercise
- Integration of Observations for
 - Trend Analysis
 - Model Evaluation
 - Emissions Estimation
- Information System Architecture
 - DAACs (Giovanni), DataFed (NEISGEI), EPA, NOAA
 - JRC, Juelich, GEMS, NILU, WMO, GEIA