Workshop on Applications of Environmental Remote Sensing to Air Quality and Public Health

NOAA Perspective on Satellite Products

Shobha Kondragunta Air Quality Program Lead Shobha.Kondragunta@noaa.gov

NOAA/NESDIS Center for Satellite Applications and Research May 8, 2007 Potomac, MD

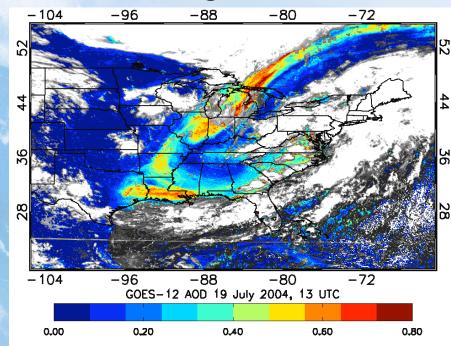
NESDIS Office of Research and Applications

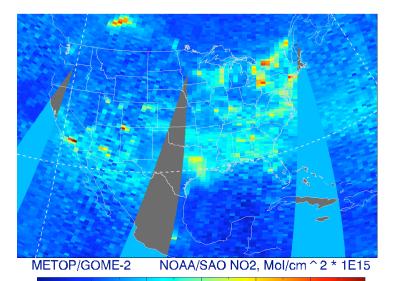
Workshop Objectives

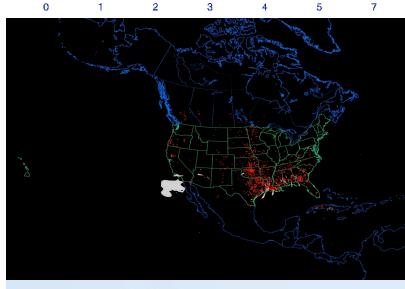
- Provide an overview of projects in the areas of air quality and public health that have cross-disciplinary relevance
- Identify data needs for air quality and public health research and management communities
- Develop partnerships and identify collaborative research opportunities
- Provide training to facilitate collaborative productive interactions between the atmospheric/Earth science and public health/medical communities

Workshop Objectives

- Provide an overview of projects in the areas of air quality and public health that have cross-disciplinary relevance
- Identify data needs for air quality and public health research and management communities
- Develop partnerships and identify collaborative research opportunities
- Provide training to facilitate collaborative productive interactions between the atmospheric/Earth science and public health/medical communities


NOAA Satellite Products

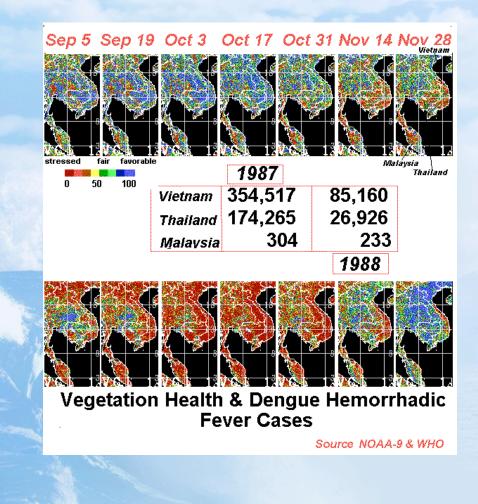

- Atmosphere
 - Temperature soundings
 - Moisture soundings
 - Winds
 - Clouds
 - Aerosols
 - Earth Radiation Budget
 - Precipitation
 - Trace gases (ozone, nitrogen dioxide etc.)


- Ocean
 - Surface temperature
 - Ice cover
 - Surface winds
 - Color
 - Sea level
- Land
 - Vegetation condition
 - Snow pack characteristics
 - Other land characteristics (e,g., albedo, skin temperature, soil wetness, insolation)
 - Fire locations/Smoke Plumes

Specific Products

- Aerosol Optical Depth
- Trace gases (ozone, nitrogen dioxide, CO etc.)
- Fire and smoke detection
- Biomass burning emissions

Satellite Data


• Pros

- Continuous coverage in space and time
- Long term record
- Near real time availability (within 1 hour of data collection in most cases)
- Cons
 - Interference and gaps due to clouds
 - No vertical information in most cases, only column amounts
 - Satellite sensor sensitivity to changes in PBL amounts varies and depends on what is being sampled and what technique is being used

How Can Satellite Data be Useful?

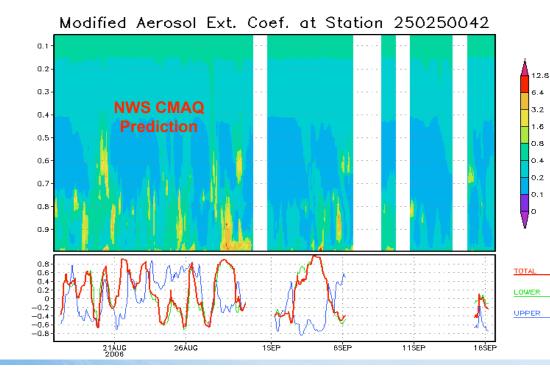
- Studies related to cause and affect
 - Is there a correlation between a particular pollutant and a particular health impact
- Predictive capability
 - Use long-term datasets of satellite data and health indicators to derive a statistical model and use the statistical model in prediction mode
 - Assimilation of satellite data to improve air quality forecast
- Air quality monitoring

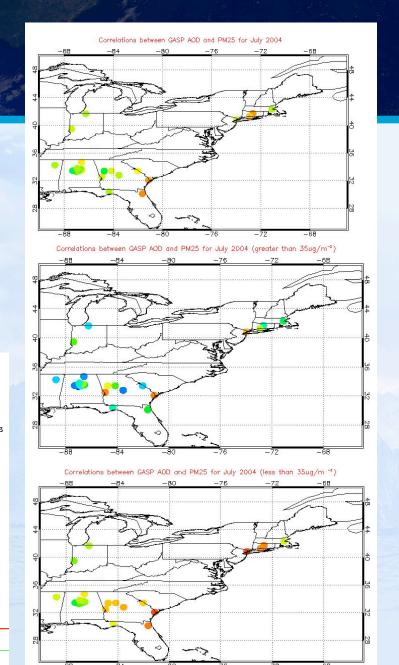
Dengue Fever and Vegetation Health

10 A F

• No vegetation stress (population affected)

• Vegetation stress (population not affected)


Felix Kogan, NOAA/NESDIS


Linking optical properties and mass concentration

• Challenges

NOAA

- Correlation varies from station to station
 - Dynamic range critical
 - Aerosol vertical structure

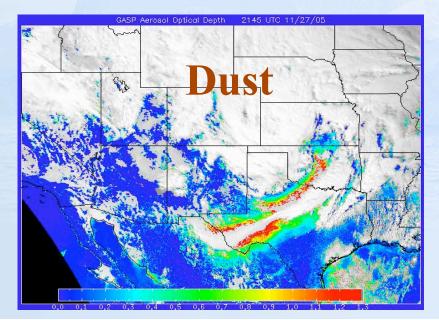
-40.

-18.

3.

25.

47.


68

90

Observed aerosol type varies but most satellite retrieval algorithms use look-up tables created with assumed aerosol models *a priori*

Conclusions/Recommendations

- Conduct multiple collaborative studies to answer these questions:
 - Are the current satellite data useful?
 - Are there enough resources available to researchers to use satellite data and study the linkages between air quality and human health?
 - If current satellite data are inadequate (noise, accuracy), what are your requirements
 - Can NASA and NOAA work towards meeting those user requirements?