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PROJECT SUMMARY 

TOPIC:  Improving the Representation of Physical Atmosphere in Air Quality 
Decision Support Systems Used for Emissions Control Strategy 
Development 

 
POP: 6/24/1/2015 – 6/23/2018 (ROSES2013-A.44) 
  
PI:  Arastoo Pour Biazar (University of Alabama – Huntsville) 
Co-Is:  Dick McNider (UAH), Daniel Cohan (Rice) 
 
Partners:  California Air Resources Board (CARB), Bay Area Air Quality Management 

District (BAAQMD), USEPA, Texas Commission on Environmental Quality 
(TCEQ), Georgia Environmental Protection Division (GA-EPD), National Oceanic 
and Atmospheric Administration (NOAA) 

 
NASA Assets:  NASA’s GOES Product Generation System (skin T, surface insolation and 

albedo); MODIS products (Skin Temperature, surface insolation and albedo) 
 
Objective: To employ NASA assets and satellite products to improve the air quality 

management Decision Support Tools (DSTs) used in defining emission control 
strategies for attainment of air quality standards. 
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Overall Objective: To Reduce the Uncertainties in Regulatory Air Quality 
Simulations Through the Use of NASA Science and Satellite Data Products 

In SIP modeling it is imperative to reproduce the observed atmosphere. Model uncertainties 
translates into uncertainties in emission control strategy which has significant economic 

consequences. 
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Specific Objectives 

 In This Project NASA Assets and Satellite Data Will Be Used to Improve the 
Quality and Accuracy of Retrospective Baseline Simulation in Which Proposed 

SIP Emission Reductions Are Tested 
 
 

Improving Emission Estimates in AQ Model 
 Utilization of Satellite Derived Photosynthetically Active Radiation (PAR) to 

Improve Biogenic Hydrocarbon Emissions: This activity utilizes NASA’s GOES 
Product Generation System (GPGS) to produce PAR (a new product) for use in AQ 
models. 

 Improving Soil Nox Emission Estimates: By including the impact of satellite 
derived temperature and soil moisture. 

 
Improving Physical Atmosphere  

 Improved Characterization of Surface Energy Budget: Using satellite derived skin 
temperature to retrieve soil moisture and correct surface heat fluxes. 

 Improving Boundary Layer Development in the Model:  By improving BL moisture 
and temperature structure. 
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Biogenic Volatile Organic Compounds (BVOC) 
Emissions 

BVOC is a function 
of radiation and 
temperature 

NOx + VOC + hv O3  

 BVOC estimates depend on the amount of radiation 
reaching the canopy (i.e. Photosynthetically Active 
Radiation (PAR)) and temperature.  

 Large uncertainty is caused by the model insolation 
estimates that can be corrected by using satellite-based 
PAR in biogenic emission models (Guenther et al. 2012)  
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Cloud albedo, surface 
albedo, and insolation are 
retrieved based on Gautier et 
al. (1980), Diak and Gautier 
(1983).  From GOES visible 
channel centered at .65 µm. 

Surface 

Inaccurate model cloud 
prediction results in 
significant under-/over-
prediction of BVOCs.  
Use of satellite cloud 
information greatly 
improves BVOC 
Emission estimates. 
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 In most applications (e.g., agriculture related) a conversion factor CF is used: 

Direct and diffuse light differences:  Highest sensitivity to clouds/aerosols and zenith 
angle, but not in the same direction. (Adapted from: Frouin and Pinker, 1994; Pinker 
and Laszelo, 1991) 



Satellite-Derived Photosynthetically 
Active Radiation (PAR)  

Based on Stephens 
(1978), Joseph (1976), 
Pinker and Laszlo (1992), 
Frouin and Pinker (1995) 





Satellite-derived insolation and PAR for September 14, 2013, at 19:45 GMT. 



Insolation/PAR Evaluation 
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Spatial Distribution of NMB (normalized mean bias) Against Soil Climate 
Analysis Network (SCAN) 
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GOES Insolation Bias Increases From West to East  

 The clear sky bias is partly due to the lack of a dynamic precipitable water in retrieval 
algorithm. 

 The retrievals will be re-processed to correct this issue. 



PAR evaluation 
against SURFRAD 
stations for 
August 2006. 
UAH product with 
bias correction 
shows the best 
agreement with 
surface obs. 



Comparing August, 2006, insolation from control WRF simulation (cntrl), UAH WRF simulation 
(analytical), and satellite-based (UAH) against 47 radiation monitoring stations in Texas.   



Domain-wide sum of estimated isoprene (ISOP) 
and monoterpene (TERP) emission strength over 
Texas area using different PAR inputs in MEGAN 
during September 2013. 

Comparison of the spatial pattern of estimated average isoprene 
emission rate in MEGAN using different PAR inputs over Texas 
domain during September 2013. 

Satellite-derived PAR 
substantially reduced 

isoprene emission 
estimates over Texas 

(DISCOVER-AQ period)  



Isoprene emission is more sensitive to PAR inputs with the highest increase region at Northeast (>30%) and 
decrease at the Southwest (> 20%). The relative change for monoterpene emission is modest (-10% to 5%). 

ISOP Diff in % TERP Diff in % 

Estimated Emission Difference and Impact on O3 for September 2013  
(Satellite - WRF) 



Mixing Heights – Underestimating mixing heights can cause overestimation 
of the sensitivity of controls. Emission reductions confined to a smaller volume 
cause a larger reduction in pollutants. A 30% error in mixing heights can 
produce 30% error in emission change impacts 



MODIS Skin 
Temperatures 

Land-use 
Categories  

From Ellenburg 2015 

Can we perhaps use satellite observed skin temperatures to specify 
parameters in land use classes so that the model in turn reproduces the 
observed skin temperatures   

Forested areas cool because of 
more evaporation or larger heat 
capacity   

Urban areas warmer because 
of less evaporation or smaller 
heat capacity  



Here we will constrain the Pleim-Xiu scheme with satellite data 
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We will use differences between satellite skin temperature observations and 
model skin temperatures to nudge moisture in the proper direction.                     
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∆𝑤𝑤𝐺𝐺 = 𝛽𝛽1(𝑇𝑇𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑇𝑇𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆 )𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  



Skin Temperature, from top to 
bottom—WRF, GSIP, and 
MODIS(Aqua). Left panels are for 
Sep 23, 2013 (Aqua overpass 
time was 19:45&19:50 GMT), 
right panels for Sep 24, 2013 
(main Aqua overpass time was 
20:30 GMT). 

NOAA GSIP skin 
temperature 
product is too high 
in the West. 



Comparison of NOAA ALEXI 
skin temperature product with 
GSIP and MODIS for September 
26 and September 29. Top panel 
is the NOAA/ALEXI product. 
Middle panel is the GSIP 
product and bottom is the 
MODIS  
NOAA/USDA  ALEXI group (Anderson et al. 
2007a and Anderson et al. 2007b). 

Comparison of Tskin from MODIS versus Tskin from the 
ALEXI product for all hours when data was available for 
the month of September 2013.  This illustrates what may 
be the irreducible uncertainty in using skin temperatures 
as a model evaluation metric.  



 Use of Satellite-based PAR in MEGAN model improved BVOC emission 
estimates and thus CMAQ performance during the DISCOVER-AQ Houston 
Campaign period in September 2013.  

 The impact of PAR inputs on ozone prediction depends on the local 
NOx/VOC ratio. Over the VOC limited region, the satellite PAR tend to shift 
the ground O3 prediction by 5-8%. 

 Currently we are in the process of producing and archiving PAR for 2006-
present with the new (updated) retrieval code. The new retrieval system 
uses a dynamic moisture field, thus, partly correcting PAR over-estimation 
in the eastern United States. 

 We are still evaluating skin temperature assimilation technique over Texas. 

 The work presented here will be expanded and tested over California 
involving our California partners. 

CONCLUDING REMARKS 
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Thank You 



Future Tasks 

  Resolve the issues with CMAS and hold a workshop. 

 Complete transitioning to CMAS and TCEQ. 

 Complete documentation. 

 Work with TCEQ for independent evaluation of tools and techniques. 

 Upgrade the current web based data delivery system for the new data 
format. 

 Respond to user community’s request for Photosynthetically Active 
Radiation (PAR). 

 We had requests from Dave Allen’s group at University of Texas-
Austin, Russ Dickerson at University of Maryland and Rice University. 



ADDITIONAL SLIDES 



ACRONYMS 

CMAQ   EPA’s Community Multiscale Air Quality (CMAQ) Model 

CMAS   Community Modeling and Analysis System 

EPA   Environmental Protection Agency 

LNOx   Lightning Generated Nitrogen Oxides 

LNOM   Lightning Nitrogen Oxides Model 

NASA  National Aeronautics and Space Administration   

SIP   State Implementation Plan 

TCEQ   Texas Commission on Environmental Quality  

 



Performing bias correction 
before converting to PAR 
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Response for Daily Max 8-hr Average O3 concentrations (September 2013) 
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the satellite PAR tend to shift the 
ground O3 prediction by 5-8% 



Factors controlling surface temperatures and moisture 
are complex and many models have created complex 
land surface models that in the end require many ill 
defined parameters.   

Temperature and Moisture Modeling   



Models have attempted to improve performance by 
developing improved land use classes (LUC) using in situ 
and satellite data 



Unfortunately models don’t use land surface classes directly. Physical 
parameters such as heat capacity, canopy resistance, surface moisture 
have to be defined for the Land Use Class 



Climate models must use complex models for energy and 
water  balance models to run unattended for years.   
 
In weather forecasting and air pollution applications  the 
better approach may be to use simple models highly 
constrained by observations. 
 
This may be especially true for retrospective studies such as 
SIP periods.  
 
Examples  
 
McNider et al 1994 MWR Moisture adjustment  using satellite time tendency data 
 
Anderson et al 1997(ALEXI)  JAM  moisture adjustment using satellite data 
 
Pleim and Xiu  2003 JAM  Moisture adjustment using surface obs 
 
McNider et al 2005 JCAM Heat capacity/thermal inertia adjustment.  
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The satellite observes a skin or radiating temperature 
while the original Pleim-Xiu scheme only provided a slab 
temperature associated with a finite heat capacity - cg 

Following Makaro 2011 we take the limit of cg  
approaching 0 to obtain a infinitely thin surface.   
   

We use root finding techniques to recover a true skin 
temperature, Ts .   
   



We have taken a different approach and have embraced 
simple models but highly constrained by observations. 
Simple model is based on the Pleim-Xiu scheme in WRF. 
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Tg 
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Original Pleim-Xiu used differences between National Weather 
Service observations and model temperatures to nudge moisture in the 
proper direction.                     
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    ∆𝑤𝑤𝐺𝐺 = 𝛼𝛼1(𝑇𝑇𝑠𝑠𝐹𝐹 − 𝑇𝑇𝑠𝑠𝐴𝐴) + 𝛼𝛼2(𝑅𝑅𝑅𝑅𝐹𝐹 − 𝑅𝑅𝑅𝑅𝐴𝐴) Daytime 



Time series for the first part of September 2013 showing GSIP 
skin temperatures, SPoRT skin temperatures and 2m observed 
temperature. 

Time series for the first part of September 2013 showing GSIP 
skin temperatures, SPoRT skin temperatures and 2m observed 
temperature. 



Example of skin 
temperature recovered in 
WRF from Pleim –Xiu 
scheme  for 1800 GMT 
Sept 13, 2013   



Fig. 6-4.  Average daytime difference of the WRF diagnosed skin 
temperature minus the NOAA ALEXI observed skin temperature for the 
period 0000 UTC 1 September 2013 through 0000 UTC 6 September 
2013.  The NOAA ALEXI observed skin temperatures are the most 
recent version with aggressive cloud screening.  Simulation is the 
insolation replacement run with the new (USGS) vegetation fraction and 
without any nudging.  Values truncated between -14 and +8  



Fig. 6-5.  Average daytime difference of the WRF diagnosed skin 
temperature minus the NOAA ALEXI observed skin temperature for the 
period 0000 UTC 1 September 2013 through 0000 UTC 6 September 2013.  
The NOAA ALEXI observed skin temperatures are the most recent version 
with aggressive cloud screening.  Simulation is the insolation replacement 
run with the new (USGS) vegetation fraction with soil nudging (shallow and 
deep) with a nudging time scale of 600 s.   



Difference between GOES Skin Temperature and WRF Control  

Potential of Skin Temperature to Improve 
WRF Performance 

In September corn 
has been harvested 
and no longer 
transpiring. WRF is 
cooler than satellite 
likely has too much 
ET or too large heat 
capacity 

In heavily forested 
areas WRF is too 
warm. May have too 
low ET or too small 
heat capacity 



Fig. 6-6.  Percentage change of the magnitude of the soil nudging bias (BN, 
absolute value of bias) relative to the magnitude of the insolation bias (BI, 
absolute value of bias ) as given by 100 ( BN – BI ) / BI.  This is the P statistic 
given by equation (7). Values truncated to ± 50 %.  Both simulations used the 
USGS vegetation fraction.  The NOAA ALEXI observed skin temperatures are the 
most recent version with aggressive cloud screening.  Both simulations are for the 
period 0000 UTC 1 September 2013 through 0000 UTC 6 September 2013.  Bias 
values are daytime only. 



Fig. 6-7  Difference between the magnitude of the soil nudging bias (BN, absolute 
value of bias) and the magnitude of the insolation bias (BI, absolute value of bias ) 
as given by BN – BI in units of K.  This is an unscaled version of the P statistic 
given in (7) - i.e. without the division of by BI.   The NOAA ALEXI observed skin 
temperatures are the most recent version with aggressive cloud screening.  Both 
simulations are for the period 0000 UTC 1 September 2013 through 0000 UTC 6 
September 2013.  Bias values are daytime only.  Same information as in Fig. 6.6 
but not normalized with respect to the insolation bias.  Negative values (cool 
colors) correspond to a reduction in the magnitude of the bias, and positive values 
(warm colors) correspond to an increase in bias 



Fig. 6-9.  Time series for 0000 UTC 1 September 2013 through 
0000 UTC 6 September 2013 for southwestern Missouri 
(location code “A”) This is a location where the magnitude of 
the bias increased with soil nudging. 
  



Corrects on second 
day by reducing 
moisture.  But following 
days increases error 



Fig. 6-11.  Time series for 0000 UTC 1 September 2013 through 
0000 UTC 6 September 2013 for western Iowa (location code 
“B”) This is a location where the magnitude of the bias increased 
with soil nudging. 





Fig. 6-13.  Time series for 0000 UTC 1 September 
2013 through 0000 UTC 6 September 2013 for 
northwestern Alabama (location code “C”) This is a 
location where the magnitude of the bias increased 
with soil nudging.  





Fig. 6-15.  Time series for 0000 UTC 1 September 2013 
through 0000 UTC 6 September 2013 for southern Indiana 
(location code “D”) This is a location where the magnitude 
of the bias increased with soil nudging. 





Fig. 6-17.  Time series for 0000 UTC 1 September 2013 
through 0000 UTC 6 September 2013 for northern Texas 
(location code “EThis is a location where the magnitude of 
the bias decreased with soil nudging. 
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