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ABSTRACT 

 
This paper presents a study on intelligent data thinning for 
satellite data. In particular, the focus is on the thinning of the 
Atmospheric Infrared Sounder (AIRS) profiles. A direct 
thinning method is first applied to a synthetic data set in 
order to identify optimal data selection strategies. Experi-
ments on synthetic data suggest that a thinned data set 
should combine homogeneous samples, and high gradient 
and variance of gradient samples for optimal performance. 
This result leads to the modification of our previously de-
veloped Density Adjustment Data Thinning algorithm 
(DADT). The modified DADT (mDADT) algorithm is used 
to thin the AIRS profiles. Experiments are conducted to 
compare the thinning performances of mDADT with two 
simple thinning algorithms. Experiment results show that 
mDADT algorithm performs better than the two simple 
thinning algorithms, especially over the regions of signifi-
cant atmospheric features.     
 

1.    INTRODUCTION 
 
Despite advances in data assimilation, it remains unclear 
how to best identify and remove redundant data. Redundant 
data are defined here as either 1) exhibiting characteristics of 
linear dependence or 2) being of sufficient density that ex-
ceeds the resolution of the assimilation grid.  It is common 
to remove (thin) high spatial and temporal resolution obser-
vations—especially data obtained from satellite or radar 
observing systems.  Despite the obvious benefits of high 
spatial resolution in data sparse regions, this practice occurs 
because large data volumes can have an adverse affect on 
the computational costs and functionality of a real-time 
forecast/analysis system.  Operational data reduction meth-
ods often tend toward a crude (but computationally efficient) 
methodology often referred to as subsampling.  However, 
recent work in the area of adaptive thinning such as top-
down clustering and thinning through estimation is promis-
ing [1].  In this approach, observation removal is contingent 
upon minimizing the impact on an analysis with error esti-
mates calculated by differencing analyses constructed with 

and without all of the observations.  The observation that 
causes the smallest increase in analysis error is removed.  
An advantage of this method is that it directly uses an esti-
mate of analysis quality to drive the data reduction.  How-
ever, the method is potentially expensive and the degree of 
optimality remains ambiguous due to both compromises 
necessary for practical application and the omission of 
background (first-guess) or observation error in the analysis.  
Using a simple one-dimensional framework consisting of 
analyses and thinning, we directly address the issue of opti-
mality.  The lessons learned from the synthetic data tests are 
applied to thermodynamic profiles retrieved from the At-
mospheric Infrared Sounder (AIRS) and compared to two 
unintelligent approaches.  
 

2.    SYNTHETIC EXPERIMENT 
 
The following synthetic experiment is designed to determine 
the optimal thinning strategy using synthetic observations 
along with explicitly defined truth and background fields.  
The thinned observations are assimilated using the varia-
tional approach described by Lorenc [2].  An idealized 1D 
truncated Gaussian with 35 observation is sampled in order 
to obtain the configuration of 5 observations that yields the 
best analysis.  A direct thinning method that takes the total 
number of possible thinning configurations and selects the 
configuration that yields the optimal analysis (as determined 
by the lowest root mean square error between the analysis 
and truth) is applied.  Here, approximately 325,000 unique 
spatial combinations of 5 observations that can be obtained 
from a single realization.  The first guess field is set to that 
of the base of the Gaussian function (dashed line Fig. 1).  
The observations are created by adding white noise to the 
truth where the observation-to-background error variance is 
set to 0.25.  Analyses were run for each of 4 different length 
scales (2Δx, 4Δx, 6Δx, and 8Δx). For 5 observations, the 
best analysis (lowest Mean Square Error, MSE), occurs for a 
length scale of 4Δx, where Δx is the grid point separation 
(Fig. 1).  For the most part, the optimal observation configu-
rations are those that retain data at the peak, within the gra-
dient, and at points where the gradient changes significantly 



 
Fig. 1: Truncated Gaussian (solid black curve), 1DVAR analysis 
(dashed curve), first guess (red dashed line) and optimal observa-
tion locations (X’s) for analysis length scale of 4Δx. See text for 
details. 
 

 
Fig. 2: Each row represents the observation subset with the lowest 
analysis MSE produced from a set of 325,000 possible configura-
tions of a single realization with an observation error variance of 
0.25 and analysis length scale of 4Δx.  X’s and O’s denote retained 
observations and grid points respectively. 
 
(referred to hereafter as anchor points, bold X’s/O’s in Fig. 
2).  In particular, the observations have an affinity for an-
chor points with 50% of the total observations located at 
these points versus 26% and18% within the peak and homo-
geneous regions respectively, and 6% at the gradient (inflec-
tion) points (Fig. 2).  These results (as well as others not 
shown) suggest that the thinned data samples should com-
bine homogeneous points, gradient points, and anchor points 
for optimal performance.  Furthermore, optimal thinning 
performance also depends on key elements of the analysis 
system itself—including the length scale (L) and the quality 
of both the background and observations. 
 
3. APPLICATION TO REAL OBSERVATIONS:  AIRS 

PROFILES 
 
Results gleaned learned from the synthetic thinning experi-
ments are applied to three-dimensional thinning of Atmos-
pheric Infrared Sounder (AIRS; [3]) thermodynamic pro-
files.  Each AIRS profile contains a pressure level below 

which data are of questionable quality, and only data above 
this pressure level are used for thinning and analyses.  The 
Advanced Regional Prediction Sys-tem (ARPS) Data Anal-
ysis System (ADAS [4]) is used to perform analyses using a 
background from a short-term Weather Research and Fore-
casting (WRF) model forecast.  Error covariances used for 
the background are standard short-term forecast errors cited 
in the ADAS documentation, and the errors for the AIRS 
profiles are based on estimates cited by Tobin et al. [5].  
Separate error estimates are used for land and water sound-
ings.  For these experiments, all thinning algorithms reduce 
the total number of AIRS profiles to approximately 10% of 
the original number of observations. 
 
3.1. Thinning Strategies for Real Observations 
 
For an intelligent thinning algorithm to be successful, it 
should outperform unintelligent thinning methods.   Hence, 
for comparison purposes, AIRS profiles are thinned using 
both intelligent and unintelligent thinning strategies.  The 
first of two unintelligent approaches applied here is a simple 
thinning method that takes every 9th profile within the data 
set without regard data density.  Eight different permutations 
of the simple thinning are performed because a different 
data set can be created depending upon where one begins the 
subselection of observations.  A second unintelligent thin-
ning method is applied in which profiles are randomly se-
lected.  A search radius is used to ensure that retained obser-
vations are thinned at a user-specified distance.  Ten differ-
ent permutations of the random thinning were performed to 
create an ensemble input for the analysis system. 

The intelligent thinning methodology used herein is a 
modified version of the thinning approach discussed in 
Ochotta et al. [6] and introduced in Splitt et al. [7] as Den-
sity Adjusted Data Thinning (DADT).  The DADT system-
atically builds a thinned set of observations from an initially 
empty set using a priority queue consisting of variance in-
tensity between observations and their neighbors.  The 
DADT has been modified using guidance from the synthetic 
experiment described in Section 2 indicating that an optimal 
thinned data set should consist of a combination of homoge-
neous, gradient, and anchor samples.  The modified DADT 
(mDADT) considers homogeneous and anchor samples in 
addition to gradient samples and uses the thermal front pa-
rameter (TFP, [8]) to help detect gradient change.  Observa-
tions targeted for retention are those in regions where the 
absolute value of the TFP is determined to be significant 
(i.e., larger than some specified user threshold).   Homoge-
neous samples are then selected in reverse order from the 
priority queue (i.e. lower variance observations).  The three 
metrics are applied independently with the retained observa-
tions removed from the queue following each step. The total 
number of observations depends on a user-specified obser-
vation retention rate.  For a given retention rate, the thinning 
performance will also depend on the proportion of each type 
of sample in the thinned data set.  For the mDADT, the 



AIRS profiles were thinned on pressure surfaces creating a 
pseudo three-dimensional thinning when the levels are re-
combined.  Because ADAS analyzes for specific humidity, 
the thinning algorithm was applied directly to equivalent 
potential temperature rather than temperature and moisture 
separately. 
 
3.2.  Results 
 
While it is generally not possible to replicate the quality of a 
full data analysis by the way of a thinned data set, it is our 
desire to produce an analysis with a shorter runtime that is 
as close to the full analysis as possible.  Because the optimal 
analysis length scale will change as a result of the thinning, 
an average horizontal observation separation is calculated 
using the distance between each observation and its nearest 
neighbor.  The average distance is then input to a simple 
linear function derived from the direct method (Section 2), 
which relates the observation separation to the optimal anal-
ysis length scale. 

Figure 4 shows the impact of applying simple, random, 
and mDADT thinning on a 700 hPa temperature field from 
12 March 2005.  The first guess field (Fig. 3) exhibits rela-
tively tight gradient regions across the upper midwest and 

 
Fig. 3.  700 hPa temperatures from AIRS profiles (left) and the 
WRF forecast used as analysis first guess (right) showing gradients 
over upper Midwest and northern Gulf of Mexico. 
 
northern Gulf of Mexico.  The three thinning algorithms 
retain observations in different locations with the gradients 
over Wisconsin and Illinois and over the Gulf of Mexico 
more clearly depicted in the mDADT thinning (Fig. 4c) than 
in either the simple (Fig. 4a) or random (Fig. 4b) thinning.  
Differences between the full analysis and each of the 
thinned analyses (Figs. 4d-f) indicate the largest discrepan-
cies are produced by the simple thinning (Fig. 3e).  The ran-
dom thinning (Fig. 4e) produces smaller differences than the 
simple thinning while the mDADT (Fig. 3f) outperforms 
both techniques.  Overall, the differences for all three

 
 

 
Fig. 4:  Thinning results for the 700 hPa temperature valid at 0800 UTC on 12 March 2005.  The top row illustrates the location of retained 
observations for (from left to right) simple subsampling, random subsampling, and mDADT.  The bottom row shows the temperature anal-
ysis differences (oC) between the full analysis and the analysis obtained from the retained observations in the top row.  The simple and 
random thinning analyses shown are for the best permutations of each. 

a) b) c) 

d) e) f) 



Table 1:  Quantitative assessment of the thinning methods.  MSEs 
compare the full and each thinned analysis.  Brackets denote the 
spread of each metric over multiple runs.  For comparison, the full 
analysis contains 211,232 observations, uses L = 81 km, and has an 
analysis time of 4,506 seconds. 

 
techniques are less than ±1.5oC (except over Minnesota for 
the simple thinning where there is no data retention).  The 
largest differences between the unintelligent and intelligent 
techniques occur over the upper Midwest, which is coinci-
dent with a gradient region.  For this particular analysis, the 
mDADT preserves the gradient in the analysis better than 
either the simple or random thinning. 

To quantitatively assess the differences between the 
three techniques, a MSE between the full analysis and each 
thinned analysis has been generated.  These results are 
summarized in Table 1.  The MSEs for the simple thinning 
are much larger than those for both the random and mDADT 
thinning.  The mDADT thinning outperforms all of the ran-
domly-thinned temperature analyses but a few of the random 
observation permutations do produce a superior moisture 
analysis.  The thinned analyses reduce the computation time 
by 60-70%; however, the mDADT appears to be the best 
compromise between speed and retention of a larger number 
of observations.  The increased analysis speed over the ran-
dom thinning is due to the shorter length scale prescribed to 
the mDADT thinning.  At this time, it is difficult to assess 
whether the improvement over the random thinning is due to 
a superior thinning method or to the slightly larger number 
of observations retained by the mDADT method (# OBS, 
Table 1).  However, the gradient regions appear to be better 
resolved in the mDADT analysis—indicating intelligent 
thinning provides a more representative set of observations 
than either simple or random thinning, especially over re-
gions of potential interest. 
 

4.  CONCLUSIONS/FUTURE WORK 
 

A 1D synthetic data test using a direct thinning method sug-
gested that a technique that includes homogeneous, gradient 
and anchor points is necessary to produce optimal thinning 
results.  As a result, a modified version of the DADT 
(mDADT) was created that applies a combination of local 
variance and a TFP parameter to select observations in ho-
mogeneous, gradient, and anchor point regions.  This algo-
rithm was applied to AIRS profile observations leading to 
better temperature analyses than either simple or random 

thinning when compared to an analysis generated from a full 
data set.  In contrast, only some of the moisture analyses 
generated via the mDADT thinning were better than the 
random thinning analyses.  Efforts continue with regard to 
fine-tuning the mDADT algorithm.  This includes extensive 
systematic testing using two-dimensional synthetic data sets 
and demonstration of the algorithm capabilities with respect 
to real-time data dissemination. 

 
5.  REFERENCES 

 
[1] N. Dyn, M. S. Floater, A. Iske, “Adaptive thinning for 

bivariate scattered data,”  J. Computational and Appl. 
Math., pp. 505-517, 2002.  
 

[2] A.C. Lorenc, “A Global Three-Dimensional Multivari-
ate Statistical Interpolation Scheme,” Mon. Wea. Rev., 
pp. 701-721, 1981. 

 
[3]  H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Gold-

berg, E. Kalnay, L. M. McMillin, H. Revercomb, P. W. 
Rosenkranz, W. L. Smith, D. H. Staelin, L. L. Strow, 
and J. Susskind, “AIRS/AMSU/HSB on the Aqua Mis-
sion: Design, Science Objectives, Data Products, and 
Processing Systems,” IEEE Transactions on Geo-
science and Remote Sensing, pp. 253-264, 2003. 

 
[4]  K. Brewster, “Implementation of a Bratseth analysis 

scheme including Doppler radar”.  Preprints, 15th Conf. 
on Weather Analysis and Forecasting.  Amer. Meteor. 
Soc., Boston, MA, pp. 596-598. 

 
[5]  D. C. Tobin, H. E. Revercomb, R. O. Knuteson, B. M. 

Lesht, L. L. Strow, S. E. Hannon, W. F. Feltz, L. A. 
Moy, E. J. Fetzer, and T. S. Cress, “ARM site atmos-
pheric state best estimates for AIRS temperature and 
water vapor retrieval validation,” J. Geophys. Res., 
D09S14, pp. 1-18, 2006. 

 
[6] T. Ochotta, C. Gebhardt, V. Bondarenko, D. Saupe, W. 

Wergen, “On thinning methods for data assimilation of 
satellite observations,” Preprints, 23rd International 
Conference on Interactive Information Processing Sys-
tems (IIPS), Amer. Met. Soc., San Antonio, TX, 2007. 

 
[7]  M. Splitt, S. Lazarus, M. Lueken, R. Ramachandran, X. 

Li, S. Movva, S. Graves, B. Zavodsky, and W. Lapenta, 
“An Improved Data Reduction Tool in Support of the 
Real-Time Assimilation of NASA Satellite Data 
Streams”.  Preprints, 12th Conf. on IOAS-AOLS, Amer. 
Meteor. Soc., New Orleans, LA, 2008. 

 
[8] R. J. Renard and L. C. Clarke, “Experiments in numeri-

cal objective frontal analysis,” Mon. Wea. Rev., pp. 547-
556, 1965. 

 Simple Random mDADT 

# OBS [22,939, 23,894] [22,062, 23,019] 23,572 

ALYS time (s) [1,185, 1,262] [1,649, 1,763] 1,386 

L (km) [142,144] [177, 179] 155 

T MSE [0.3292, 0.3653] [0.3053, 0.3168] 0.3010 

q MSE [1.1266, 1.1604] [1.0284, 1.0595] 1.0420 


