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ABSTRACT

In weather forecast and general circulation models the behavior of the atmospheric boundary layer,
especially the nocturnal boundary layer, can be critically dependent on the magnitude of the effective model
grid-scale bulk heat capacity. Yet, this model parameter is uncertain both in its value and in its conceptual
meaning for a model grid in heterogeneous conditions. Current methods for estimating the grid-scale heat
capacity involve the areal/volume weighting of heat capacity (resistance) of various, often ill-defined,
components. This can lead to errors in model performance in certain parameter spaces. Here, a technique
is proposed and tested for recovering bulk heat capacity using time tendencies in satellite-retrieved surface
skin temperature (SST). The technique builds upon sensitivity studies that show that surface temperature
is most sensitive to thermal inertia in the early evening hours. The retrievals are made within the context
of a surface energy budget in a regional-scale model [the fifth-generation Pennsylvania State University–
National Center for Atmospheric Research Mesoscale Model (MM5)]. The retrieved heat capacities are
used in the forecast model, and it is shown that the model predictions of temperature are improved in the
nighttime during the forecast periods.

1. Introduction

The behavior of the nocturnal boundary layer is criti-
cal to operational weather forecasts of minimum tem-
peratures and winds related to agricultural freeze warn-

ings, utility load forecasting, transportation fog adviso-
ries, and other interests. Additionally, air pollution
exposure from surface sources is often highest in stable
conditions as a result of a lack of ventilation and ver-
tical mixing. Ironically, long-term exposure of humans
and plants to certain air pollutants, such as ozone, can
occur when the nocturnal boundary layer fails to stabi-
lize, allowing the continued downward flux of ozone
from the residual boundary layer above. The behavior
of the atmospheric boundary layer, especially the noc-
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turnal boundary, is critically dependent on the surface
heat capacity, or, more generally, a surface resistance
parameter.

In the following, a technique for recovering an effec-
tive grid-scale heat capacity or resistance parameter us-
ing evening skin temperature time tendencies from geo-
stationary satellites is described. The use of the morn-
ingtime tendencies of air (Mahfouf 1991) and skin
(McNider et al. 1994, hereinafter McN94; Norman et al.
1995) temperatures has been employed to recover in-
formation relative to surface moisture. However, the
use of evening skin tendencies for retrieving informa-
tion on the surface heat capacity or resistance has not
been reported. The recovery of soil moisture and the
recovery of heat capacity, as presented here, have com-
mon attributes in that both are based on the model
sensitivity studies of Carlson (1986) and Wetzel et al.
(1984). These show (for reasonable parameter spaces)
that the morning rise in surface temperature is most
dependent on surface moisture, whereas the evening
tendencies are most sensitive to thermal inertia. In both
cases the sensitivity assessment assumes that most of
the error in a modeled skin tendency is the result of
errors in the specification of the most sensitive variable.
Both techniques are similar in that they also assume
that other terms in the surface heat balance are correct.
This is an assumption that can fail. McN94 used special
observations from the First International Satellite Land
Surface Climatology Project (ISLSCP) Field Experi-
ment (FIFE) and Mahfouf (1991) from the Hydrologi-
cal Atmospheric Pilot Experiment–Modélisation du Bi-
lan Hydrique (HAPEX–MOBILHY) to evaluate the
other terms in the equations.

Here, initial tests of recovering the heat capacity are
presented. While the results of these tests are encour-
aging in that the use of the recovered heat capacity
improved model predictions of the nocturnal boundary
layer, the general application of this technique may
have to be limited to certain synoptic situations. In a
second part of this paper (R. T. McNider et al. 2005,
unpublished manuscript, hereinafter Part II), the be-
havior of the stable boundary layer is explored, and this
analysis shows that the recovery of the heat capacity
may, in practice, be limited to certain parameter spaces.
Additionally, it addresses the day-to-day consistency of
the retrieved heat capacities and issues with sensitivity
and numerical solution techniques.

2. Background on the heat capacity parameter

Before discussing the satellite assimilation strategies,
we review surface energy budget formulations and, spe-
cifically, the role of surface heat capacity in weather

forecast and global climate models. Most early meso-
scale models (Mahrer and Pielke 1976; Physick 1976;
McNider and Pielke 1981) utilized a heat balance equa-
tion at the surface of the following form:

0 � RN � H � G � E, �1�

where RN is the net radiation (including net shortwave,
incoming atmospheric longwave, and outgoing long-
wave), H is the sensible heat flux, G is the soil heat flux,
and E is the latent heat flux. The surface was repre-
sented as an infinitesimally small layer with zero heat
capacity. Temperature was calculated through root-
finding techniques, and heat capacity was not relevant
in the flux to this infinitesimal surface because heat
capacity has no meaning for a zero mass surface and
cancels in the definition of the ground heat flux,

G � Cg��TS��z � Cg

�

Cg
�TS��z. �2�

Here, TS is the soil temperature, Cg is the soil volumet-
ric heat capacity (soil density times specific heat capac-
ity), � is the soil thermal conductivity, and �, which
combines heat capacity and conductivity, is referred to
as the soil diffusivity (McCumber and Pielke 1981; Pe-
ters-Lidard et al. 1998). Note that this equation neglects
advection and normally assumes vertical homogeneity
in the soil. The heat capacity is relevant to the local
change of temperature in the soil

�TS

�t
�

�

Cg
�TS��z, �3�

potentially impacting G by affecting the surface gradi-
ent �TS /�Z. McCumber and Pielke (1981) also consid-
ered that the heat capacity and diffusivity should in-
clude dependence on soil moisture.

Other early models (Blackadar 1979; Bhumralkar
1975) used a prognostic equation for the surface tem-
perature of the form

Cb��TG

�t � � RN � H � G � E, �4�

where TG is the surface temperature. This form now
includes what is referred to as a storage term Cb�TG/�t,
because it represents the imbalance in the forcing terms
on the right-hand side. The definition and interpreta-
tion of Cb depends on what the surface includes.
Blackadar (1979) took the surface to be a uniform slab
that is representative of bare soil. Thus, Cb represented
the heat capacity over some assumed depth of the slab,
that is, Cb � Cg � dS. Blackadar also specified Cb such
that it included the diurnal frequency 	 and conductiv-
ity so that the single-layer slab model would replicate
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the phase and amplitude of the surface temperature
from that of a multilayer, analytical soil model. Thus,
for the slab model, the depth dS, as a scaling parameter,
enters through the conductivity and thermal forcing fre-
quency so that

Cb � ��Cg

2� �1�2

. �5�

Here it can be seen that Cb involves both volumetric
heat capacity and thermal conductivity, and is some-
times referred to as the heat capacity per unit area of
the slab, or what we will refer to as bulk heat capacity
(Pleim and Xiu 1995). This is the basic form of the
force–restore model that is implemented in the fifth-
generation Pennsylvania State University–National
Center for Atmospheric Research Mesoscale Model
(MM5), described by Grell at al. (1994).

In a similar context of an analytical model, Carlson et
al. (1981) defined the thermal inertia 
,

� � ��Cg�1�2, �6�

as a key parameter in the response of the surface to
energy inputs. Other investigators, such as Wetzel and
Chang (1988), examining fluxes over vegetative cano-
pies, considered that the surface might include vegeta-
tion or standing water, such as dew. They suggested
that Cb represented a vegetation-layer capacity that is
determined as the biomass fraction times the heat ca-
pacity of water plus the dew. Thus,

Cb � �bm � WR�CW, �7�

where bm is the water-equivalent biomass fraction, WR

is the water or dew on the vegetation, and CW is the
heat capacity of water (Argentini et al. 1992).

Smirnova et al. (1997) provided an interface-
spanning formulation that included both the soil and a
thin atmospheric layer. Then,

Cb � ��AcP�zA � Cg�zs�, �8�

where �A is the air density, �zA is the thin atmospheric
layer depth, and �zs is the first layer soil depth.

As investigators begin to apply the equations in mod-
els where both bare soil and vegetation might be
present (Noilhan and Planton 1989; Jacquemin and
Noilhan 1990), the form of the equations was changed
to write the heat capacity as a heat capacity coefficient
CT, the inverse of the heat capacity parameter Cb,
that is,

��TG

�t � � CT�RN � H � G � E�. �9�

The heat capacity coefficient was then usually deter-
mined as a harmonic average of the heat capacities of
vegetation, soil, or other substances. For example, Noil-
han and Planton (1989) used

CT � 1��1  veg

C̃bg

�
veg

C̃b	
�. �10�

Here, C̃bg represents the heat capacity coefficient
for soil, and C̃b� represents the vegetation coefficient.1

Because the importance of the inclusion of soil mois-
ture freezing has been established (Viterbo et al. 1999;
Boone et al. 2000), more complicated forms have been
used, such as

CT � 1���1  veg��1  f�

C̃bg

�
�1  veg�f

C̃bi

�
veg

C̃b	
�, �11�

by Giard and Bazile (2000), where f is the fraction of
frozen water in the soil and C̃bi is the heat capacity
coefficient of ice.

The correct specification of the vegetative capacity
has been subject to debate as well as, perhaps, the
specification of CT in general. Pleim and Xiu (1995)
argued that the value for vegetative heat capacity that
was used by Noilhan and Planton (1989) (C̃b� � 103 K
m2 J1) was far too large for reasonable model perfor-
mance. This was also indicated by Manzi and Planton
(1994). Mahfouf et al. (1995) proposed C̃b� � 2 � 105

K m2 J1. Giard and Bazile (2000) reduced this value
even further to C̃b� � 8 � 106 K m2 J1. (One has to
be careful when discussing large and small, reduce or
increase, because C̃b is the inverse of Cb.)

In fact, there has been substantial tuning of the CT

parameter based on model performance, with argu-
ments for the tuning based on uncertainties in vegeta-
tive canopy heat transfer. Even for bare soils the effects
of moisture and texture on heat capacity makes speci-
fication difficult. For complex settings, such as mixed
land uses that are encountered in general weather fore-
casts and in GCMs, the specification of Cb or CT is far
from being settled. In the following we will use the term
bulk heat capacity to refer to this parameter, but intend
that its meaning is that of a combined heat capacity and
heat transfer parameter, as given in Eqs. (10) or (11).

In examining Eqs. (1) or (6), it seems clear that be-
cause Cb or CT is a direct multiplier of all of the flux

1 Here trying to put the notation across the literature in a com-
mon form is difficult. We use � to indicate that the C̃b is 1/Cb so
that C̃b has units of inverse joules times meters squared times
kelvins, which is the inverse of the units of the heat capacity
parameter Cb in Eq. (2) above.
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terms, its magnitude should be critical to model the
ground temperature performance. Errors or uncer-
tainty in the specification of CT of factors up to orders
of magnitude, as discussed above, are of considerable
concern in getting the right surface tendency and, ulti-
mately, the right surface temperature in NWP models
and GCMs. The error in specifying CT is at least as
large as errors in the actual flux terms. One only has to
imagine the real-world example of the eastern United
States, which has mixed vegetation of different types,
different soils and textures, rocks, roads, standing wa-
ter, and so on, to recognize the difficulty in specifying
CB for a model grid. The following discusses a proposed
technique for specifying the heat capacity/resistance pa-
rameter using satellite data as an observational con-
straint. Fundamentally, the technique uses the satellite
radiometer to measure the surface temperature change
over the model grid area to derive an improved effec-
tive bulk heat capacity parameter. This is somewhat
equivalent to the way in which a laboratory uses a ther-
mometer to measure temperature change for a known
input of energy to determine a heat capacity of some
substance. In the present application, the “known” en-
ergy input is not perfect because these are the flux
terms, but sensitivity analyses bolster the confidence
that more error may exist in the a priori specification of
CB than in the flux terms. The following outlines the
technique.

3. Methodology

Carlson et al. (1981) and others have argued that the
surface energy terms with the largest uncertainty, in
terms of their impact on model sensitivity, are the ther-
mal inertia (�Cg)1/2, defined above, and the surface
moisture availability. Figure 1 from Carlson (1986)
shows the sensitivity of a model to variations of the key
model parameters. For the range of reasonable specifi-
cation and uncertainty, the morning temperature is
most sensitive to moisture availability, and the evening
temperature is most sensitive to thermal inertia. Other
factors, such as roughness, and so on, showed less sen-
sitivity for reasonable ranges of specification. For ex-
ample, moisture availability might truly span the range
from near 0.0 to 1.0, but one would not expect the error
in roughness specification to span the range from 1 cm
to 5 m. Carlson (1986), Price (1982), and others devel-
oped techniques to use day and night passes of polar-
orbiting IR sensors as two independent pieces of infor-
mation to simultaneously recover thermal inertia and
surface moisture availability. The techniques showed
promise in case studies; however, the inversion process
did not always produce a unique solution. Further, sta-

tionary conditions over the 12-h passing time of the
polar orbiters that were required for the technique
were not always met. Thus, while these techniques were
pioneering, they have evidently not been widely used in
the initialization of operational NWP models or other
mesoscale model applications.

To avoid some of the difficulty with the Carlson
(1986) and Price (1982) polar-orbiter technique, Wetzel
et al. (1984) proposed to use midmorning skin tempera-
ture tendencies from geostationary satellites to recover
the surface moisture availability. McN94, building upon
the work of Carlson, Price, and Wetzel et al., developed
a technique to use morning skin temperatures tenden-
cies from Geostationary Operational Environmental
Satellite (GOES) to recover soil moisture. Jones et al.
(1998a,b) extended the work of McN94 by retrieving
stomatal resistance. Lapenta et al. (1999) implemented
the technique within the MM5 system (Grell et al.
1994), and the technique has undergone extensive test-
ing in a semi-operational setting for weather forecasts
and air pollution modeling applications. It has proved
to decrease model bias and standard error of tempera-
ture and humidity in long-term statistical tests (Lapenta
et al. 1999). Diak and Whipple (1995) have also used
morning tendencies for the specification of model pa-
rameters to improve model performance.

We now turn our attention to the other term identi-
fied by Carlson (1986), in addition to moisture avail-
ability, that has large uncertainty, and yet to which the
surface cooling rate is sensitive—thermal inertia (and
related heat capacity). As noted above, heat capacity is
an extremely difficult quantity to specify based on tra-
ditional land use data. The following describes the use
of an observational constraint—evening skin tempera-
tures from GOES—in a mesoscale model to recover the
bulk grid-scale heat capacity.

a. Retrieval of bulk heat capacity using evening
skin tendencies

Following McN94, we first define the surface energy
budget of the model for a composite surface (the mix-
ture approach; Koster and Suarez 1992) as

Cbm�dTG

dt �m
� �RN � H � G�m � Em �12�

and the energy budget observed by the satellite as

Cbs�dTG

dt �s
� �RN � H � G�s � Es, �13�

where dTG/dt is the rate of change of the land surface
temperature (LST), RN is the net radiation (including
net shortwave, incoming atmospheric longwave, and
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outgoing longwave), H is the sensible heat flux, G is the
soil heat flux, and E is the latent heat flux. The sub-
scripts m and s denote the model and satellite variables,
respectively. Because we are now considering a com-
posite surface representing the characteristics of veg-
etation, soil, and so on, rather than bare soil, as dis-
cussed above, Cb is no longer simply a heat capacity,
but is more like a resistance to forcing.

Based on the sensitivity work of Carlson (1986) and
Wetzel et al. (1984), McN94 made the critical assump-
tion that all of the terms in the model’s surface energy
budget are the same as that for the actual energy bud-
get observed by the satellite, except for the latent en-

ergy term E. With this assumption, we take the differ-
ence of Eqs. (12) and (13) to obtain

Es � Cb��dTG

dt �s
 �dTG

dt �m
�� Em, �14�

where (dTG/dt)s is calculated from hourly GOES-
derived LST products that are interpolated to the
model grid. These GOES-derived LST products are de-
scribed in section 3c.

The way in which the moisture flux is adjusted within
the model is dependent upon the flux formulation. In
McN94, the surface specific humidity was analytically

FIG. 1. Sensitivity study adapted from Carlson (1986) showing strong dependence of skin temperature
tendencies on moisture availability in the morning and thermal inertia in the evening.
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recovered from similarity theory using this satellite-
inferred evapotranspiration (Es). In MM5, surface spe-
cific humidity is not a prognostic variable. Therefore,
the moisture availability parameter was retrieved. This
is also accomplished through inversion of surface simi-
larity expressions (Lapenta et al. 1999).

Returning to the energy budgets as seen by the
model and satellite in Eqs. (8) and (9), respectively, we
now consider that the model Cbm may be different than
the satellite Cbs. We will also employ the sensitivity
results of Carlson (1986) to make the assumption that
the evening skin tendencies are most sensitive to ther-
mal inertia (and related heat capacity). Carlson and
others have suggested that the balance in the nocturnal
boundary layer is dominated by the longwave outgoing
radiation from the surface and the flux of heat from the
ground flux. This balance is best realized under light
winds and for simple bare-soil situations. Under such
conditions, or if we make the assumption that moisture
availability has been correctly specified (or is negli-
gible, which may be largely true if stomata have closed),
we can subtract Eqs. (12) and (13) to solve for Cbs. We
assume that there is negligible difference in net radia-
tion, sensible heat flux, and soil heat flux. Thus,

Cbs � Cbm�dTG

dt �m
��dTG

dt �s
. �15�

The assumption made here about the soil heat flux be-
ing specified correctly in the model is perhaps incon-
gruous with the arguments above that the heat capacity
or thermal inertia are not well known. However, for
convenience we make the assumption that all of the
error is initially in Cbm rather than in both Cbm and the
soil heat flux. As an alternative, because Cg is contained
in the soil heat flux term Eq. (2) and in Cbm, one could
attempt to solve for Cg directly using both terms, al-
though the inversion would be more difficult. However,
for this first attempt we solve for Cbs and then change
Cg using Eq. (3) in the heat flux terms.

The initial value for the model Cbm would be deter-
mined in the normal fashion from land use information
(see below). The new Cbs would be subsequently used
as the model value; thus, the new Cb does impact the
ground heat flux. We believe the natural averaging in
the satellite IR pixel is an advantage in the technique
described below for recovering the composite surface
grid-scale Cb. In carrying out the above retrieval, one
has to be especially careful that the satellite is actually
seeing the surface to determine the skin temperature
tendencies. Cloud masks are more difficult to define in
the evening. Section 3c describes the satellite process-
ing and methods for deducing the tendencies that are
needed in Eq. (15).

We recognize that the above characterization of the
surface energy budget in Eq. (12) is highly simplified,
and that Cb contains multiple physical factors, such as
canopy mechanical and radiative exchange, soil and
vegetative heat capacity, and so on. However, given
that the actual surface is incredibly complicated and
does not lend itself readily to a first-principle model
and the associated multiple parameters that would be
involved, we believe that Cb as a model heuristic con-
strained by observations has utility in many modeling
endeavors.

b. Use and specification of bulk heat capacity in
MM5

In the present study, we employ MM5 to recover the
bulk heat capacity and, thus, as a preface give details of
how heat capacity and thermal inertia are used and
specified in MM5. Based on the Blackadar (1979) ap-
proach discussed above [see Eq. (3)], in MM5 Cb is
related to thermal conductivity (�), heat capacity per
unit volume (Cg), and the angular velocity of the earth
(	) by

Cb � 0.95��Cg

2� �1�2

� 3.293 � 106��Cg�1�2

� 3.293 � 106�, �16�

where thermal inertia [
 � (�Cg)1/2] is supplied (cal
cm2 K1 s1/2).2 Except for the five-layer soil model
Cb is used for all soil options within MM5. For the
five-layer soil model, volumetric heat capacity (Cg) is
recovered from thermal inertia and, subsequently, the
bulk heat capacity (Cb) is obtained as

Cb � Cg � �z, �17�

where �z is the top soil-layer thickness (1 cm). From
Eq. (4) thermal inertia (
) is related to thermal con-
ductivity (�) and volumetric heat capacity and using the
definition of diffusivity in Eq. (2),

� � �Cg. �18�

According to Dudhia (1996), � is chosen as a fixed
value of 5 � 107 (m2 s1) to represent an intermediate
value between sand and clay soil (� � 106 for hard
rock). Now replacing the above relationship for ther-
mal conductivity in the definition of thermal inertia
yields

� � ��Cg
2�1�2 � �1�2Cg. �19�

2 Note that the origin of the 0.95 factor in Eq. (16) is evidently
to replicate higher harmonics. The original Blackadar (1979) pa-
per used 1.0.
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Therefore,

Cg � �1�2� � 1414.2�. �20�

Including the conversion factor [4.18 � 104 (J cal1) �
(cm2 m2)] for MM5, Cg is then calculated as

Cg � �5.9114 � 107��. �21�

In MM5, thermal inertia (
) is taken from the land use
table (provided as input to the model). For the U.S.
Geological Survey (USGS), 24-category land use table,
there are only 5 values for thermal inertia (
 � 100),
ranging from 2 (for bare ground tundra) to 6 (for wa-
ter). Figure 2 shows the 25-category vegetation type
obtained from the USGS interpolated to a 12-km grid
over the southeast using the standard preprocessing
package available with the MM5 modeling system.
Only 16 of the available 25 types exist in the domain.
Evergreen needleleaf is the dominant category stretch-
ing east-northeastward from southern Mississippi into
the northern half of Georgia. Dry land crop pasture is
found along the Mississippi River and southern Geor-
gia, while deciduous broadleaf vegetation and crops/
woods mosaic covers Tennessee.

Figure 3 shows the associated heat capacity as de-
fined from the land use connected thermal inertia in the
MM5 terrestrial initialization package. It can be seen
that the bulk heat capacity in the model domain has
very little spatial variability. In fact, the only variation
found over land is associated with urban centers. Such
a homogeneous field is clearly not representing the
complexities of heat capacity in the real world.

c. Satellite processing

The satellite data that are used in this study are from
the GOES-8 imager, which is a five-channel (one vis-
ible, four infrared) imaging radiometer designed to
sense radiant and solar-reflected energy from sampled
areas of the earth. The visible channel has 1-km reso-
lution while the shortwave (3.7 �m) and thermal infra-
red window (10.8 and 11.8 �m) channels have 4-km
resolution. Additional details on the GOES I–M series
of satellites may be found in Menzel and Purdom
(1994).

A critical element in providing useful satellite-
derived LST retrievals during the early evening and
nighttime hours is the ability to consistently monitor
and quantitatively detect cloud cover. The cloud-
detection algorithm used with GOES data requires the
11-�m longwave and the 3.9-�m shortwave images, two
20-day composite images generated from the 11- minus
3.9-�m differences, and an 11-�m 20-day maximum
temperature composite image. The output from the
cloud mask algorithm is a simple pixel resolution image
with values indicating either the presence or absence of
a cloud. Details of this cloud-detection method for
GOES can be found in Jedlovec and Laws (2003).

The procedure for the retrieval of insolation and LST
is described in detail by Haines et al. (2004). An abbre-
viated version is presented below. The insulation re-
trievals followed Gautier et al. (1980) and Diak and
Gautier (1983), using visible radiances corrected for
drift in the GOES-8 optical/detector response (Rao et
al. 1999). Insulation values derived in cloudy regions
include a bulk parameterization of the cloud effects.
Hourly insolation estimates were retrieved at each

FIG. 2. Land use classification on the 12-km MM5 grid as speci-
fied using the 25-category USGS dataset available in the modeling
system.

FIG. 3. Default heat capacity (KJ m2 K1) obtained using the
25-category land use USGS dataset in the MM5 modeling system.
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model grid point over the domain of interest from an
average of 1-km pixel values. LST was retrieved with a
physical algorithm developed by Jedlovec (1987) and
applied by Guillory et al. (1993) to GOES data. The
algorithm inverts a perturbation form of the radiative
transfer equation to simultaneously solve for total pre-
cipitable water and LST. The algorithm relies on the
radiative transfer equation to form a physical (rather
than statistical) representation of the atmosphere and
uses a priori (guess) thermodynamic data to constrain
the retrieval. Retrievals were made using GOES hourly
observations that are valid at 45 min past the hour.
GOES imager radiance data from a 3 � 5 pixel array
centered on each model grid point were checked for
clouds averaged to produce a single radiance value for
retrieval. A minimum of six clear pixels were required
for a retrieval to be made from the gridpoint-averaged
radiance. MM5 forecast grids of thermodynamic data
(temperature and mixing ratio as a function of pres-
sure) from a model control run were used as input to
the transmittance code (McMillin and Fleming 1976) to
generate the guess data need for the retrieval algo-
rithm. Garand et al. (2001) have shown that this trans-
mittance formulation produces an adequate represen-
tation of brightness temperatures for window channel
observations.

It is difficult to quantify the accuracy of GOES LST
retrievals. Errors in satellite-derived skin temperature
can come from many sources: sensor calibration, instru-
ment noise, algorithm biases, and weaknesses in under-
lying assumptions (either in the mathematical formula-
tion or in the use of a priori data). Suggs et al. (1998)
indicated that for idealized conditions (known surface
emissivities, no instrument calibration or random noise
errors), LST could be accurately retrieved with this
technique to within 0.20 K. No significant diurnal varia-
tion in this performance or guess dependence was ob-
served. Most recently Suggs et al. (2003) compared
GOES imager LST retrievals to MODIS retrievals pro-
duced by Wan and Dozier (1996) [available from the
National Aeronautics and Space Administration
(NASA) Earth Observing System (EOS) Distributed
Active Archive Center (DAAC)]. GOES-8 imager re-
trievals exhibited an overall 1.2–1.5-K warm bias com-
pared to the Moderate Resolution Imaging Spectrora-
diometer (MODIS) skin temperature values over the
southeast United States. This was partially attributed to
the different emissivity assumptions that are used in
each approach. Despite the possible bias in the GOES
LST retrievals, the use of time tendencies eliminates
the effect of these biases in the subsequent model as-
similation procedures.

4. Experiment design

a. Case study

An initial trial of the technique to recover Cbs using
the early evening satellite skin temperature tendencies
within the MM5 was conducted for a clear-sky case
study over the southeastern United States on 19 May
2002. Figure 4 shows a depiction of the spatial variation
in GOES-derived LST tendencies in late afternoon
(1545–1845 CDT) over the Southeast in May 2002. A
high degree of spatial correlation exists between the
satellite-derived LST tendencies and USGS vegetation
types as seen by comparing Figs. 2 and 4. As noted
above, Cb within a model grid cell is determined by a
host of factors—soil type, soil moisture, biomass frac-
tion, percent water in the biomass, and canopy ex-
change rates, just to name a few. The LST tendencies in
Fig. 4 reflect some of these factors. Areas near the Mis-
sissippi River in western Tennessee where the satellite
pixels cover water or swamplands have small cooling
rates on order of 5°C (3 h)1. In contrast, agricultural
areas that are adjacent to but removed from the river,
which have some bare ground, show larger cooling
rates by a factor of 2. At this time of year crops such as
cotton are not fully leafed out. Additionally, the heavily
vegetated areas of the Smoky Mountains and Cumber-
land Plateau have smaller cooling rates.

The 500-hPa height field in Fig. 5a shows that the
synoptic setting for this case is characterized by a high-
amplitude wave pattern with a trough centered in east-
ern Canada and the trailing ridge extending northward
through the Plains States into central Canada. A 1037-

FIG. 4. Skin temperature tendencies [°C (3 h)1] retrieved from
GOES 19 May 2002 over the 3-h period ending at 2345 UTC (1845
CDT).
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hPa anticyclone (Fig. 5b) is located beneath the upper-
level ridge axis and extends southward into the central
United States. A cold frontal boundary and associated
cloud cover is situated along the east coast, and the
western cloud edge extends northeastward from the
central Florida Panhandle, through Georgia, into cen-
tral North Carolina. The surface conditions over the
model domain (not shown) indicate that winds behind
the front are primarily from the north-northeast at less
than 10 kt (�5 m s1). Temperatures range from near
12°C across the southern part of the domain to near 7°C
in northern Tennessee.

By 0000 UTC, the frontal boundary and associated
cloud field propagated eastward as the anticyclone con-
tinued to build southward. Surface air temperature re-
bounded approximately 15°–17°C in response to the
clear-sky conditions during the day despite the 10–15-kt
northerly winds over the region. The pressure gradient
weakened over night, allowing winds to become light
and variable, and surface temperatures cooled nearly
15°C in the subsequent 12 h.

b. Model configuration

The MM5 has a nested grid configuration consisting
of a 36-km coarse grid covering the contiguous lower 48
states and a 12-km grid of dimension 73 � 73 points
centered over north-central Alabama (Fig. 5b). The
model is run in nonhydrostatic mode with 27 vertical
levels and is initialized at 1200 UTC 19 May 2002. Ini-
tial conditions are obtained from the National Centers
for Environmental Prediction (NCEP) Eta Data As-
similation System (EDAS) analysis (Rogers et al.
1996), available on the 40-km Advanced Weather In-
teractive Processing System (AWIPS) 212 grid. Fields
are interpolated to the MM5 grid using the standard
preprocessing software. Lateral boundary conditions
for the coarse domain are obtained from 3-hourly fore-
casts of the NCEP Eta Model (Black 1994) on the
AWIPS 212 grid. The vertical transport of momentum,
heat, and moisture in the planetary boundary layer is
calculated using a countergradient term as described by
Hong and Pan (1996). Shortwave radiation interacts
with atmosphere, clouds, precipitation, and the land
surface as described by Dudhia (1989). The longwave
atmospheric radiation is represented by the Rapid Ra-
diative Transfer Model (RRTM) developed by Mlawer
et al. (1997). The Kain–Fritsch cumulus scheme (Kain
and Fritsch 1993) and simple ice microphysics (Dudhia
1989) are used for cloud and precipitation processes.

A total of three model runs, initialized with identical
atmospheric analyses and configured with the same at-
mospheric parameterizations, were conducted and run
out to 48 h. A control run using the traditional five-
layer diffusion soil model described by Dudhia (1996)
was produced using the default heat capacity param-
eters (Fig. 3) as specified by the 25-category USGS land
use (Fig. 2). Two additional simulations complete the
experiment design. The first additional run uses the
satellite retrieval method to specify heat capacity. The
only difference between it and the control is that the
default heat capacity in the slab land surface scheme is
replaced with the parameter recovered using the satel-
lite data. This run is hereinafter referred to as the sat-
ellite heat capacity run. The third run employs the more
detailed Oregon State University land surface scheme
(LSM; Pan and Mahrt 1987) available within the MM5
package (Chen and Dudhia 2001). The OSU LSM is
capable of predicting soil moisture and temperature in
four layers from the surface down to 100 cm. It contains
predictive equations to explicitly predict moisture
sources associated with evapotranspiration through
vegetation and evaporation from bare soil. Surface
fluxes used for input to the planetary boundary layer
are determined from surface layer exchange coeffi-

FIG. 5. Synoptic setting at 1200 UTC 19 May 2002: (a) 500-hPa
heights (dam) and (b) sea level pressure (hPa). The box high-
lighted in (b) is the MM5 12-km domain.
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cients, radiative forcing, and precipitation. The vegeta-
tion indices and soil types are specified by the same
USGS 25-category dataset that is used in the slab
model. Therefore, the OSU LSM is initialized using the
default heat capacity. However, it uses an energy bal-
ance method [Eq. (1)] so that heat capacity only enters
through the soil model. Canopy transfer rates some-
what analogous to Eq. (7) are embedded within the
scheme. Soil moisture is initialized from the EDAS
analyses.

5. Results

a. Retrieved heat capacity

Simulated land surface temperature tendencies for
(dTG /dt)m in Eq. (14) are extracted from the control
run during the 3-h period of 2045–2345 UTC 19 May
(1545–1845 CDT). Satellite tendencies (dTG /dt)s that
are required to solve Eq. (15) are calculated for the
same 3-h period as those extracted from the control
run. Inspection of the simulated (Fig. 6) and satellite
land surface temperature tendencies (Fig. 4) reveals
several important differences. The land surface cooling
rates during the 3-h period that are observed from the
satellite are generally larger than those produced by the
model. In fact, the model fails to produce cooling in any
grid greater than 6°C (3 h)1. In addition, and perhaps
most important, the satellite tendencies exhibit much
more finescale variability. Features such as the agricul-
tural areas or forested areas are not differentiated in
the model.

Equation (15) is now solved for the satellite-retrieved
heat capacity parameter using the default heat capacity
(Fig. 2), along with the LST tendencies extracted from
the control run (Fig. 6) and the corresponding values
obtained from the satellite (Fig. 4). In areas where
clouds prevent LST retrievals, the satellite-retrieved
heat capacity is set to the default. The resulting satel-
lite-derived heat capacity is displayed in Fig. 7. The
results appear encouraging as the field appears to re-
flect structures associated with the underlying land use
(Fig. 2). For example, the heavily vegetated areas in the
Smoky Mountains and Cumberland Plateau extending
down to north-central Alabama show up as having a
high heat capacity, as might be expected as a result
from the large amount of biomass with a high water
content. The more sparsely vegetative surfaces repre-
senting more agricultural land in the Tennessee Valley
between the Cumberland Plateau and Smoky Moun-
tains yield a lower heat capacity. Similar results for the
Mississippi River and adjacent agricultural areas are
evident as well.

It should be noted that where the MM5 land/water
mask indicates water, a satellite-derived heat capacity
was not recovered. The low heat capacities over the
Gulf of Mexico are default values, and they are not
changed or used in the numerical experiments. It is
interesting to note that the retrieval technique recovers
large values of heat capacity near the land/water inter-
face along the northern Gulf Coast. This is indicative of
the fact that some of the grid cells that are categorized
as land may actually be water. The retrieval technique
could be exploited as a better technique to make these
land/water designations especially along complex coast-

FIG. 6. Skin temperature tendencies [°C (3 h)1] computed by
MM5 using default land use heat capacity values 19 May 2002
ending at 2345 UTC (1845 CDT).

FIG. 7. Heat capacity (KJ m2 K1) retrieved from GOES
tendencies using Eq. (14) in the text.
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lines or marshy areas within the mesoscale model sys-
tems.

b. Impact on model performance

The high degree of correlation between the retrieved
heat capacities in Fig. 7 and land use type suggest they
appear physical. However, the practical question is
whether the use of these new heat capacities actually
improves model performance. The selected case study
is benign, meteorologically, in that there is no precipi-
tation and relatively few clouds. As a result, radiative
processes play a dominant role in the near-surface tem-
perature tendencies. Analysis will focus on the ability
of the models to replicate the observed diurnal cycle
over the southeast from 1200 UTC May 19 to 1200
UTC 21 May 2002.

Hourly statistics of the bias and root-mean-square
error (rmse) are calculated for the near-surface air tem-
perature and dewpoint over the entire 12-km grid. All
available National Weather Service (NWS) observing
sites are used, providing an average of 90 observations
per hour. Differences are calculated by interpolating
model grid data to the observation location. Examina-
tion of the control run bias in Fig. 8 indicates relatively
good performance during the daylight hours on both
days. However, a warm bias of approximately 1.1°C
develops on both nights. It is important to mention here
that the MM5 is often found to have a warm bias at
night. This is especially true when using the longwave
radiation scheme of Dudhia (1989). In contrast, the
RRTM has been noted to reduce the nighttime warm
bias (Parsons and Dudhia 1997; Zamora et al. 2003) and
is used in this study. Replacement of the default heat
capacity by the satellite-retrieved heat capacity has
little impact on the daytime bias in terms of both mag-
nitude and trend. This is an important result given the
relatively good performance of the control daytime
simulation. The overall effect is a slight warming of
0.15°C on both days.

The largest impact of the satellite-derived heat ca-
pacities is a dramatic reduction of the nighttime warm
bias. Both control and satellite heat capacity runs have
a warm bias near 1°C at sunset on both days. However,
the satellite heat capacity run bias approaches zero in
the subsequent 5 h and remains near zero until sunrise.
By 1300 UTC May 20 (25 h into the simulations), both
the control and satellite heat capacity temperature bi-
ases are nearly identical again. The enhanced cooling
found at night is consistent in that the satellite-derived
heat capacities as seen in Fig. 5 are smaller than the
default values. Thus, the smaller heat capacity would
increase the cooling if the other dominant forcing such
as downward longwave radiation remained constant.

Other forcing mechanisms such as turbulent heat flux
and outgoing longwave are not necessarily constant.

The OSU LSM run has the largest temperature bias
of the three model configurations used in this study.
The bias is cold during daylight hours on both days and
is largest during midday with values close to 1°C in day
1 and 1.6°C on day 2. The nights are characterized by a
significant warm bias of 2.5°C on the first night with a
maximum just before sunrise of 2.9°C. The bias is not as
large on the second night but still approaches 1.8°C for
the duration.

A diurnal trend in the magnitude of the rmse similar
to the bias is found in all simulations, and the largest
values occur during the nighttime hours (Fig. 9). The
satellite-retrieved heat capacity has little impact during
the day but provides a slight improvement during the
night of about 0.2°C, or 10% of the total error. The
OSU LSM has the largest rmse of the runs throughout
the simulation period with the largest values near 3.0°C
on both nights.

The dewpoint statistics shown in Fig. 10 indicates
that all three simulations have a dry bias and exhibit
similar trends. As was the case with temperature, use of
the satellite-derived heat capacity has little impact on
the dewpoint bias during the daylight hours. There is a
20% increase of the dry bias that is evident on both
nights. The OSU LSM dry bias is better than both the
control and satellite heat capacity runs on both days by
approximately 20% but it is considerably worse by a

FIG. 8. Hourly 2-m air temperature (°C) bias over the model
domain for 48-h forecasts initialized at 1200 UTC 19 May 2002.
MM5 default thermal inertia specified for the control run using
the simple land surface scheme (SLAB DEFAULT) and Oregon
State University land surface scheme (OSU DEFAULT). The
simple thermal diffusion land surface scheme was initialized with
the GOES-inferred heat capacity (SLAB SATCAPG). Shading
indicates overnight hours from 0000 to 1200 UTC.
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factor of 2 during the nights. The same trends are evi-
dent in the dewpoint rmse (not shown).

It is clear from the verification statistics that the
simple slab formulation using the satellite-retrieved
heat capacity produced the most realistic surface tem-

perature forecast for this specific event. Results for the
dewpoint were not as good as the control run during the
evenings, but differed by less than 20%. One could ar-
gue that the relatively poor performance of the OSU
LSM in this case should not be regarded as the norm.
The OSU scheme is fundamentally sound in terms of
physical parameterizations, and numerous studies have
reported positive results. The performance of the
scheme is obviously sensitive to the specification of sur-
face characteristics such as vegetation fraction, rooting
depth, soil types, and soil moisture. No attempt was
made in this study to develop a modified soil moisture
field using antecedent precipitation analyses. The soil
moisture was initialized in typical fashion using the
fields in the EDAS analyses; although, perhaps coarse,
it does contain an antecedent precipitation analysis.
Given that the focus of this paper is on the nighttime
energy budget, it is not obviously clear what impact
adjusting the OSU soil moisture would have on the
results obtained there from. However, it is noted that a
heavy and widespread precipitation event occurred 2
days before this case study. Precipitation in excess of
0.5 in. (�1.25 cm) fell in a 24-h period ending at 1200
UTC 18 May over the majority of the model domain. If
other offline methods were used to modify EDAS soil
moisture analysis for this event, one would assume an
overall moistening and a reduction of the dry bias in the
OSU LSM run. However, it would also be expected to
reduce sensible heat fluxes and cause a worsening of
the cold bias found during the daylight hours under
conditions of strong solar forcing.

Verification statistics that are presented above are
averaged over the entire model domain, while the sat-
ellite heat capacity was only retrieved where skies were
clear at 1545 and 1745 CDT 19 May. Therefore, a per-
centage of the observation–model temperature pairs
used to calculate the bulk verification statistics are lo-
cated within areas where the satellite heat capacity
could not be retrieved and the values were set to the
default. The spatial distribution of the 2-m temperature
difference between the control run and the satellite
heat capacity run is used to illustrate the impact of
using the satellite-retrieved heat capacities. Figure 11
shows the difference field in the early morning hours
before sunrise at the 22-h forecast that is valid at 1000
UTC 20 May when the domain biases were �1.0° and
0°C for the control and satellite heat capacity runs, re-
spectively. The control 2-m temperature field is found
to be warmer that the satellite heat capacity run and the
largest difference in excess of 1.8°C is found over the
agricultural regions along the Mississippi River. The
response is consistent with the fact that the satellite-

FIG. 10. Hourly 2-m dewpoint temperature bias (°C) over the
model domain for 48-h forecasts initialized at 1200 UTC 19 May
2002. MM5 default thermal inertia specified for the control run
using the simple land surface scheme (SLAB DEFAULT) and
Oregon State University land surface scheme (OSU DEFAULT).
The simple thermal diffusion land surface scheme was initialized
with the GOES-inferred heat capacity (SLAB SATCAPG). Shad-
ing indicates overnight hours from 0000 to 1200 UTC.

FIG. 9. Hourly 2-m air temperature (°C) rmse over the model
domain for 48-h forecasts initialized at 1200 UTC 19 May 2002.
MM5 default thermal inertia specified for the control run using
the simple land surface scheme (SLAB DEFAULT) and Oregon
State University land surface scheme (OSU DEFAULT). The
simple thermal diffusion land surface scheme was initialized with
the GOES-inferred heat capacity (SLAB SATCAPG). Shading
indicates overnight hours from 0000 to 1200 UTC.
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recovered heat capacity values are typically lower than
the default values (cf. Figs. 3 and 7).

In summary, the results from this first attempt look
very promising in that model performance at night is
significantly improved. However, the results obtained
from the OSU scheme should be viewed with some
caution. As stated above, it is recognized that the
scheme is sensitive to the initial specification of soil
moisture and new high-resolution offline methods for
initialization are becoming available to the modeling
community (see Chen et al. 2004 or Xiu and Pleim
2001). However, the majority of MM5 users do not cur-
rently have access to offline methods of soil moisture
initialization and typically use fields obtained from
analysis systems, such as EDAS.

6. Summary and conclusions

The bulk heat capacity is a difficult-to-define quan-
tity for a model grid that is several kilometers in scale.
Its value depends on both the gross heat capacity and
exchange rates within the grid. In actual practice these
heat capacities and exchange rates are the result of a
combination of surfaces from soils, to plant canopies, to
standing water, or to man-made structures. Investiga-
tors such as Carlson et al. (1981) recognized from an
observational perspective that model parameters such
as soil heat capacity and soil diffusivity lost their mean-
ings in highly heterogeneous settings. They defined a
parameter, thermal inertia (
), as simply being a pa-
rameter that controls the change in surface temperature
for a given forcing. Individual components such as heat

capacity or thermal conductivity could be extracted, if
needed, if one or the other were specified. In the model
of Carlson et al. (1981) changes in temperature could be
related to 
 after the fact through the definition of 
,
but 
 did not appear as an explicit parameter in the
equations.

In this investigation we follow Wetzel and Chang
(1988), and others listed in section 2 above, in utilizing
the bulk heat capacity Cb or its inverse (CT), which does
appear as an explicit parameter in the model. In utiliz-
ing Cb as separate parameter it might be argued that the
soil heat flux term G not be used in the surface tem-
perature equation because it could be wrapped within
Cb. However, in keeping with the traditional model
structure we have retained this form.

The first results of a retrieval of Cb based on obser-
vations from satellites appear promising. It is recog-
nized that a limiting factor of the technique is the in-
ability to recover heat capacity under cloudy condi-
tions. However, this negative impact can be mitigated
by applying the technique sequentially on a sequential
daily basis. The transient nature of cloud patterns over
time will eventually allow the heat capacity to be re-
covered over the entire model domain. Such a configu-
ration would allow daily and seasonal changes in the
recovered heat capacity to be evaluated. In addition,
the technique could also be configured to recover sur-
face moisture in the morning (McN94) and heat capac-
ity in the evening.

It should be recognized, however, that Cb is a model
heuristic and does not have the physical meaning of a
true substance heat capacity. There are additional is-
sues with the sensitivity of the model system to Cb. Last,
there are issues about how well the boundary layer
model performs in the nocturnal boundary layer where
we are making certain assumptions about the robust-
ness of the model in making the Cb retrievals. There are
parameter spaces in terms of wind and roughness where
the nocturnal boundary layer makes abrupt transitions
between a decoupled state and a turbulently connected
state (McNider et al. 1995). Thus, retrievals of Cb may
be limited to certain wind regimes. These issues will be
dealt with in a separate paper (Part II).
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FIG. 11. The 2-m temperature difference (control minus satellite
capacity run; °C) over the model domain for the 22-h forecast
valid at 1000 UTC 20 May 2002.
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