A Reanalysis Synthesis of EOS Observations to support the National Climate Assessment

Michael Bosilovich
Siegfried Schubert, Arlindo da Silva, Randy Koster
and Michele Rienecker*

NASA National Climate Assessment Indicators Team
Meeting
April 8-9, 2014
Overview

- Initial NCA Project
 - Reanalysis Assessment
 - New Products
 - High-Res Proof of Concept

- Reanalyses and Climate Applications
 - Regional Climate Variability
 - National Climate Assessment
 - Climate Monitoring

- MERRA2 and Beyond
 - Rationale for a sequel
 - Recent development

JJA Precipitation Anomalies (mm/day)
NASA and Reanalysis

NASA’s strategic goal

“Advance Earth System Science to meet the challenges of climate and environmental change”

• Approach: characterize, understand, predict using NASA’s observations and so acquire deeper scientific understanding of the components of the Earth system and their interactions.

• Role of Reanalyses in NASA’s mission:
 • Long-term synthesis of data for a physically consistent climate research-quality data sets
 • Initial and boundary conditions for predictions
 • Validation and verification references, and internal and external constraints to models
Initial Project Summary

- Developed Assessment of MERRA and Reanalyses for US summertime regional climate (Project Report, 2012; Bosilovich 2013, JAMC)
- Tested and Delivered several MERRA-based data products
 - NCA Regional Time Series Data
 - MERRA-Land and MERRAero
 - Enhanced Ocean Flux Product
- Tested $\frac{1}{4}^\circ$ Reanalysis system in EOS period
 - Computationally expensive (short duration)
 - Little or no improvement in precipitation stats
Summer MERRA – Gauge Correlation

- Skill is regional
- Large scale influence (e.g. ENSO) can be resolved
- Mesoscale and Land-Atm interactions need study
- Bosilovich (2013)
Motivation for the Follow-on

- New data available for Reanalysis (MLS, OMI, GPSRO, IASI to name a few)
- Aerosol data assimilation incorporated
- 2013 NCA Report includes substantial discussions on extreme events and uncertainties
 - Can reanalysis play a more significant role in regional climate assessment?
- Collaboration with the INCA team for advanced metrics in reanalysis evaluation
Current and Planned Activities

- Develop MERRA2
 - 1979-onward, $\frac{1}{2}$ degree resolution
 - Latest data, updated data
 - Updated data assimilation and background model

- Explore Reanalyses for Climate Data Indices
 - Implement CDO routines for Extremes – making data available and documented online
 - Collaborate with INCA team

- Uncertainty in Regional Climate
 - Collaborate with obs4MIPS and ana4MIPS
Indices Computed and Availability

- Current MERRA-Based Indices
 - Processed using Climate Data Operators (CDO)
 - RX5day, RX1day – Max 5,1 daily precipitation in a month or season
 - 95th, 90th and 75th Percentile Precipitation
 - Heat (Cold) Wave Duration Index
 - Warm (Cold) Spell Duration Index
 - Growing Season Length
 - Some assorted data processed for input

- Data at NCCS Portal: Some pre-generated images will be linked near the MERRA Atlas

- Exploring interactive display of the data with the GESDISC Giovanni team
Max Daily Precip in a Season

- Largest precip occurrence each season at each grid point
- Hurricane Season (Jun-Nov) shows increases along East Coast and SE US
- MERRA represents the variability of the extreme precipitation well
Compositing the most extreme years to show the supporting large scale environment

- Low pressure in tropical Atlantic, with weaker westerly flow
- SST Shows warm Atlantic, including off the east coast and La Niña Pacific pattern
Warm/Cold Spell Duration

- Relies on daily mean temperature above (below) the 90th (10th) percentiles for the day over three days
Daily Composites of Extremes

- Choose days when mean T2m exceeds 90th%
- JAN days in the Northeastern US
- Strong southerly flow ahead of low pressure to the west

12 NASA INCA Meeting 8 April 2014
MERRA2 Evolution

- MERRA system will be obsolete in a few years
- Precipitation bias correction for land forcing and aerosol deposition
- Aerosol data assimilation interactive radiation - Black and Organic Carbon, Dust, Sea Salt
- Substantial revisions to the boundary layer in the background model
- Updated observational data (e.g. IASI, GPSRO)
- Tropical Cyclone Relocation
- Water Vapor Mass Increment Correction
 - Constrains the water vapor increment to be very small when averaged globally
Sweeper (2 degree) Experiment

- Water Vapor Mass Conservation stabilizes TPW
- Global E/P balance – Increments are small
- Regional increments would still be locally influential
Summary

- Developing climate index routines and verification with MERRA
 - Access through GSFC NCCS and exploring Giovanni
- Looking forward MERRA2 validation and production
 - *Currently processing Spin-up periods*
- Interested in testing and verifying additional indices in collaboration with the NASA INCA team
Supplementary Information
MERRA

• GEOS-5 ADAS, 2008 version – GEOS-5.2.0
 • 1/2° × 2/3° × 72L
 • 1979-present; cont. as a ~2-week delayed NRT climate analysis
• MERRA-Land as an update to the land-surface collection

• Web site (FAQ, blog, issues found/resolved) http://gmao.gsfc.nasa.gov/merra
 • MERRA Atlas (http://gmao.gsfc.nasa.gov/ref/merra/atlas/)
• Data online through the GES DISC (http://disc.sci.gsfc.nasa.gov/mdisc/)
 • > 2.2 PB distributed to date – Several access options
 • International by Volume: Canada, Japan, Germany, Spain, Taiwan, UK
• MERRA is online at PCMDI’s ESG for CMIP5 model evaluations (other reanalyses have been included lately)

• MERRA Special Collection in J. Climate
 • GMAO’s Overview paper – Rienecker et al. (2011)
 • 20 papers
MERRA On-line Resources

• http://gmao.gsfc.nasa.gov/merra
 • MERRA Atlas
 http://gmao.gsfc.nasa.gov/ref/merra/atlas/
 • MERRA-Land as an update to land-surface collection
 • Extremes
 • MERRA is online at PCMDI’s ESG for CMIP5 model evaluations
• Data Access: GES DISC
 http://disc.sci.gsfc.nasa.gov/mdisc/
MERRA2 – New Data in the Modern Climate Record From 1979 – Present

- MERRA2 includes the latest satellite observing systems
 - NPP: ATMS, CrIS, OMPS
 - MetOp-A/B: IASI, ASCAT, GOME2, AMSU, MHS
 - OSCAT, GPS-RO, SSMI (v7)
 - Reprocessed AMV
 - SBUV-v8

MERRA2 will begin from 1979 and carry on for several years to come, adding some of the latest observations and significant updates to the data assimilation and global model.
MERRA2 - Improved Analysis and Model

- **Aerosol Analysis**
 - Includes Black and Organic Carbon, Dust, Sea Salt
 - Interactive with modeled radiative fluxes

- **Water Vapor Conservation**
 - Surface pressure and water vapor (ANAQ) analyses are penalized for global imbalances
 - The result is that unphysical changes in total mass are ameliorated
 - Improved balance between global Precipitation (P) and Evaporation (E)
MERRA-driven component reanalyses

Underway:
- CO₂ (AIRS, AVHRR, MODIS)
- Aerosols (MODIS, MISR)
- Ocean (JASON, Argo, in situ)
- Sea-ice (ice concentration)
- Ocean biology (SeaWIFS, MODIS)
- Land surface (AMSR-E, ASCAT, SMOS, MODIS, GRACE)

Analyzed Sea-ice conc. 2/20/2007

AERONET

Baseline Assimilation

AOT (500 nm) at Bonanza Creek Assimilation of MODIS data

Linear trends of HC300, 1993–2009 from GMAO Ocean Reanalysis (°C/decade) constrained by MERRA

Improvements in soil moisture skill (R) from data assimilation (2007-2010)
Summer MERRA – Gauge

JJA Pr MERRA Correlation to CPC

NCA CONUS Regions

NASA INCA Meeting 8 April 2014
Climate Monitoring

- Temperature can be robust
- Biases remain; no surface temperature analysis
Heat Wave Duration Index

- 5K above climatology for 5 day stretches
- Not exactly warming, but affected by warming
- Identifying an appropriate daily temperature data set for comparisons
Max vs Mean Precip Composite Anomaly
MERRA Acknowledgements

System Development

GMAO: Ricardo Todling, Max Suarez, Julio Bacmeister, Emily Liu, Meta Sienkiewicz
Larry Takacs, Phil Pegion, Mike Bosilovich, Ron Gelaro, Michele Rienecker, Steve Bloom, Austin Conaty, Arlindo da Silva, Wei Gu, Randy Koster, Andrea Molod, Steven Pawson, Chris Redder, Siegfried Schubert

Non GMAO: Jack Woollen, Leo Haimberger, Joanna Joiner, Pete Robertson

Input data:
NCEP, NESDIS, NCAR, NCDC, RSS (SSMI radiances and wind speed), JPL (QuikSCAT), CERSAT (ERS winds); TRMM project; GSFC SBUV team

Production and Data Serving:
Rob Lucchesi, Tommy Owens, Doug Collins, Dana Ostrenga, Jerry Potter

External Advisory Group:
Phil Arkin, Alan Betts, Robert Black, David Bromwich, John Roads, Jose Rodriguez, Steven Running, Paul Stackhouse, Kevin Trenberth, Glenn White