Cryosphere Radiative Forcing: An Indicator of Climate Feedback and Environmental Change

Mark Flanner and Deepak Singh
University of Michigan

April 9, 2014
NASA National Climate Assessment and Indicators Team Meeting
Motivation and goal

- Presence of snow and sea-ice increases Earth’s reflectance
Presence of snow and sea-ice increases Earth’s reflectance.
A 1% reduction in Earth’s planetary albedo exerts a “forcing” of 3.4 W m$^{-2}$, almost as large as a doubling of CO$_2$. Large capacity for albedo change and positive feedback on climate from the cryosphere.
Motivation and goal

- Presence of snow and sea-ice increases Earth’s reflectance
- A 1% reduction in Earth’s planetary albedo exerts a “forcing” of 3.4 W m$^{-2}$, almost as large as a doubling of CO$_2$. Large capacity for albedo change and positive feedback on climate from the cryosphere
- Changes in snow cover and sea-ice during recent years are evident, but direct radiative impacts are less well-quantified
Motivation and goal

- Presence of snow and sea-ice increases Earth’s reflectance
- A 1% reduction in Earth’s planetary albedo exerts a “forcing” of 3.4 W/m^{-2}, almost as large as a doubling of CO$_2$. Large capacity for albedo change and positive feedback on climate from the cryosphere
- Changes in snow cover and sea-ice during recent years are evident, but direct radiative impacts are less well-quantified
- **Goal**: Provide a continuously updated, near real-time product of the global *cryosphere radiative effect*
Cryosphere radiative effect (CrRE): The instantaneous perturbation to Earth’s TOA shortwave energy budget induced by the presence of surface cryospheric components (snow cover, sea-ice and glaciers).
Definition

- **Cryosphere radiative effect (CrRE):** The instantaneous perturbation to Earth’s TOA shortwave energy budget induced by the presence of surface cryospheric components (snow cover, sea-ice, and glaciers).

- More climatically-relevant quantity than snow/ice extent. Time evolution of this quantity represents a direct measure of albedo feedback from the cryosphere.
Definition

- **Cryosphere radiative effect (CrRE):** The instantaneous perturbation to Earth’s TOA shortwave energy budget induced by the presence of surface cryospheric components (snow cover, sea-ice and glaciers).
- More climatically-relevant quantity than snow/ice extent. Time evolution of this quantity represents a direct measure of albedo feedback from the cryosphere.
- Contributions separated from:
 1. Seasonal snow cover
 2. Glaciers and ice sheets and overlying snow
 3. Sea-ice
Definition

- **Cryosphere radiative effect (CrRE):** The instantaneous perturbation to Earth’s TOA shortwave energy budget induced by the presence of surface cryospheric components (snow cover, sea-ice and glaciers).
- More climatically-relevant quantity than snow/ice extent. Time evolution of this quantity represents a direct measure of albedo feedback from the cryosphere.
- Contributions separated from:
 1. Seasonal snow cover
 2. Glaciers and ice sheets and overlying snow
 3. Sea-ice
- **CrRE influences:**
 1. Albedo of the snow or ice
 2. Albedo of the underlying substrate (contrast induced by cryospheric presence)
 3. Insolation
 4. Cloud masking
Reduced snow albedo impact over mature forests
Snow-covered / snow-free albedo contrast

- Reduced snow albedo impact over mature forests
- Large snow impact on grasslands and tundra
- Reduced snow albedo impact over mature forests
- Large snow impact on grasslands and tundra
- Mean contrast varies with definition of “snow-covered”
1979–2008 change in boreal CrRE

- Long-term record derived from AVHRR snow cover data, microwave sea-ice data

Figure: Flanner et al, 2011
1979–2008 change in boreal CrRE

- Long-term record derived from AVHRR snow cover data, microwave sea-ice data
- 30-year change in NH land CrRE:
 $+0.22 \ (0.11 - 0.41) \ \text{W m}^{-2}$
- 30-year change in sea-ice CrRE:
 $+0.22 \ (0.15 - 0.32) \ \text{W m}^{-2}$

Figure: Flanner et al, 2011
1979–2008 change in boreal CrRE

- Long-term record derived from AVHRR snow cover data, microwave sea-ice data
- 30-year change in NH land CrRE:
 \[+0.22 \ (0.11 \ - \ 0.41) \ \text{W} \ \text{m}^{-2}\]
- 30-year change in sea-ice CrRE:
 \[+0.22 \ (0.15 \ - \ 0.32) \ \text{W} \ \text{m}^{-2}\]
- Combined global effect was \(\sim 30\%\) as large as the change in \(\text{CO}_2\) forcing over the same time period

Figure: Flanner et al, 2011
1979–2008 change in CrRE: Seasonal cycle

Peak sea-ice change occurs in June

Figure: 'X' indicates month of statistically-significant change ($p = 0.01$). Flanner et al. (2011)
1979–2008 change in CrRE: Seasonal cycle

- Peak sea-ice change occurs in June
- Land-snow CrRE changes are significant during March–August

Figure: ‘X’ indicates month of statistically-significant change ($p = 0.01$). Flanner et al. (2011)
1979–2008 change in CrRE: Seasonal cycle

- Peak sea-ice change occurs in **June**
- Land-snow CrRE changes are significant during March–August
- June peak in land snow change is sensitive to mountain snow cover estimates (Himalaya, Tien Shan)

Figure: 'X' indicates month of statistically-significant change ($p = 0.01$). Flanner et al. (2011)
Recently, *Pistone et al.*, (2014, PNAS) derived a larger estimate (0.43 W m\(^{-2}\)) of the NH-averaged 1979–2011 change in CrRE due to Arctic sea-ice loss.

Figure: Pistone et al. (2014)
Work in progress

- Phase 1a: Develop 2001–2013 spatially-continuous land-based CrRE from MODIS, NISE, and model-generated radiative kernels
- Phase 1b: Adapt algorithm to accommodate VIIRS data
- Phase 2: Develop algorithm for sea-ice CrRE that accommodates frequent updates
Snow-free albedo

- 16-day snow-free albedo climatologies from *Moody et al.* (2007) serve as baseline (MODIS product MOD43B3).
Phase 1a: Algorithm

MODIS Q2 available?

- yes → Snow present?
 - yes → Snow present in NISE?
 - yes → 16-day snow-covered albedo climatology?
 - yes → \[\Delta \alpha = \alpha(t) - \alpha_{\text{snow free}}(t) \]
 - no → \[\Delta \alpha = 0 \]
 - no → \[\Delta \alpha = \alpha_{\text{snow covered}}(t) - \alpha_{\text{snow free}}(t) \]
 - no → \[\Delta \alpha = \alpha_{\text{snow covered}}(t) - \alpha_{\text{snow free}}(t) \]
- no → \[\Delta \alpha = \alpha_{\text{snow covered}}(t) - \alpha_{\text{snow free}}(t) \]

CrRE(all-sky) = \[\Delta \alpha \cdot \partial F_{\text{AS}} / \partial \alpha \]

CrRE(clear) = \[\Delta \alpha \cdot \partial F_{\text{CS}} / \partial \alpha \]
Example: Cryosphere-induced Change in Albedo

Cryospheric change in albedo, January 1, 2001 (+16)
Example: Method used to determine $\Delta \alpha$

Data Flag, January 1 - January 16, 2013
Example: All-sky and clear-sky CrRE

Global-mean: -4.3 W m^{-2}

-4.7 W m^{-2}
Example: Animated Timeseries of All-sky CrRE
Example: Global annual-mean timeseries
Example: Continental seasonal timeseries

N. Hemisphere June (p=0.0055)

Eurasia April–June (p=0.0083)
Global annual-mean land-based cryosphere radiative effect (CrRE) is \(\sim -2.6\, \text{W m}^{-2} \)
Conclusions and next steps

- Global annual-mean land-based cryosphere radiative effect (CrRE) is $\sim -2.6 \text{ W m}^{-2}$
- Trends in Eurasian spring CrRE are evident, while North American timeseries are more noisy (preliminary)
Conclusions and next steps

- Global annual-mean land-based cryosphere radiative effect (CrRE) is \(\sim -2.6 \text{ W m}^{-2} \)
- Trends in Eurasian spring CrRE are evident, while North American timeseries are more noisy (preliminary)
- Next steps: Extend algorithm to VIIRS data, enabling continual updating of CrRE product into near future.
Global annual-mean land-based cryosphere radiative effect (CrRE) is $\sim -2.6 \text{ W m}^{-2}$

- Trends in Eurasian spring CrRE are evident, while North American timeseries are more noisy (preliminary)
- Next steps: Extend algorithm to VIIRS data, enabling continual updating of CrRE product into near future. Develop algorithm for sea-ice CrRE.
Global annual-mean land-based cryosphere radiative effect (CrRE) is \(\sim -2.6 \text{ W m}^{-2} \).

Trends in Eurasian spring CrRE are evident, while North American timeseries are more noisy (preliminary).

Next steps: Extend algorithm to VIIRS data, enabling continual updating of CrRE product into near future. Develop algorithm for sea-ice CrRE.

Produce spatially-averaged timeseries for key regions of interest.
Application of observational CrRE

Evaluation of CrRE in the CESM [Perket et al, 2014]