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PURPOSE

Use of Satellite Data to Improve the Physical
Atmosphere in SIP Air Quality Decision Models

The purpose of this project is to employ satellite products
to improve the physical atmosphere in air quality models
used to define emission control strategies for attainment
of air quality standards.
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CONTEXT

The State Implementation Plan (SIP) Decision Making Process

Once an area exceeds the National Ambient Air Quality Standard
(NAAQS) for a criteria pollutant (O3, NO, SO2, particulate matter) and is
listed by the USEPA as non-attainment the state must develop a plan or
strategy to lower the pollutant levels to meet the NAAQS.

A design day or design period is selected usually the period when the
highest pollutant levels occur.

Model simulations are carried out to determine whether the model can
reasonably replicate the episode conditions and the observed pollutant
values for this period.

Next various emission reduction scenarios in these models are carried out
to determine the most efficient strategy for meeting the air quality
standards for the design period. This defines the SIP.
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Control Strategy Simulations - Inputs
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Control Strategy Decisions made with MM5/CMAQ
can amount to billions of dollars.

sUnder the Southern Oxidant Study it was estimated
that SIP control decisions involved $5 billion for 6
southeastern states

eIn Texas the cost of the ozone SIP for Houston alone
was estimated to be over $1 billion.

*Nationally these SIPs amount to ten’s of billions in
control costs.




Design Period Simulations — Satellite Inputs
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Impact of Physical Atmosphere on SIP Control Strategies

Temperature — over prediction of temperature can bias ozone controls
toward NOx controls as thermal decomposition and increases slope of
ozone/NOy curves. Additionally, biogenic emissions will be overestimated.
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Photolysis Rates — Errors in photolysis rates can change response time of
ozone production and change significantly levels at a given monitor
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LATITUDE {SOUTH MNEGATIVE)

Moisture — Pollutant uptake by plants is directly related to
photosynthesis and transpiration. Under-estimation of moisture
and associated surface loss can overestimate the role of long
range transport in local air pollution levels.

TIME : 23-AUG-2000 13:00 DATA SET: sfc.dZ.ontr.082313_090212.nc
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Mixing Heights — Underestimate of mixing heights can cause an over-
estimate of the sensitivity of controls. Emission reductions confined to a
smaller volume cause a larger reduction in pollutants. A 30% error in mixing

heights can produce 30% error in emission change impacts
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Wind speed — In the southeast the under-prediction of
wind speed can bias control strategies toward VOC
sensitivity as local VOC emissions dominate over
transport of biogenic emissions into the city.




Major Tasks

1. Benchmark satellite improvements in
MMS5/CMAQ

2. Develop model/data distribution system to
serve federal/states/cities/private consultants
carrying out SIP modeling.

3. Partners - EPA NERL/AMD / NOAA Air
Resources Laboratory




Benchmarking
Current Benchmarking Plan

1. Compare control MM5/CMAQ versus satellite
assimilation MM5/CMAQ for TEXAQS 2000 and
TEXAQS2006 against observed in situ data.

2. Compare control MM5 versus satellite assimilation
MMD5 for test cases against MODIS/GOES skin
temperature data




AQ MODELING COMPONENTS IMPROVED BY THE
UTILIZATION OF SATELLITE DATA

Data assimilation will improve the representation of physical atmosphere
in the AQ modeling system by impacting:

1. Surface energy budget (MM5, WRF)
» Assimilating Insolation
» Assimilating surface albedo
* Recovering moisture availability
» Recovering bulk heat capacity
2. Photolysis rates (CMAQ)
3. Vertical motion and clouds (MM5, WRF)




Surface Energy Budget (MM5, WRF)

Three Uncertain Parameters

d
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Photolysis Adjustment

( (CMAQ)

=4 Cloud albedo, surface
albedo, and insolation are
retrieved based on Gautier et
al. (1980), Diak and Gautier
(1983).
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Overview of the Data Archive & Delivery system

NSSTC Satellite Ground Station & Data Link

A 4

NSSTC Satellite Data Processing & Product Generation
Insolation
Skin Temperature
Surface Albedo
Cloud Albedo
Cloud Top Temperature/Pressure
Cloud Transmittance
MODIS Emissivity
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Web Based Satellite data delivery system (SAT_ASSIM.NSSTC.UAH.EDU)

» Archive and Distribute Data
» Regridding Software
» Data Processing Software

State, Local & Private Sector Users




PROJECT VALIDATION ACTIVITY

Satellite assimilation technique for surface properties has shown that the surface/air
temperature predictions can greatly be improved.

2-m Temperature Bias
(12-km domain, TexAQS2000)

10 Comparing model 2-M
temperature predictions
~ to the observed
temperatures from
~National Weather
" Service stations shows
that the satellite

assimilation technique
(blue line) reduces
the model bias in the
model (warm bias at
night and cold bias

8 during the day).
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Utilizing Satellite Observed Temperature for Model Evaluation

TIME : 30-ALG-2000 19:45 DATA SET: cld dat tex2000.nc TIME @ 30—-AUG—2000 Z0:00 DATA SET: sfe.dZ.entrl.082313_090212.nc TIME : 20—-AUG—2000 23:00 DATA SET: sfe.d2 assim.new.082313_090212.nc
' 7 £ s MMS version 3 format output on sigma levels MM5 version 3 format output on sigmo levels
1 1 | ] 1 1 1 1 1 . 1 | ] | I 1 I ] 1
£
40°N — — 40°H —
a2
- |- s - -
F 34
e | | !
= - 38N " 3800 B
O 308
= J L J L
3 -2 || o g
2 _ - i
= - FESE = 8 D 32N -
| 5

Model |- W Model Y}

- CNTRL (ASSIMILATIONY
T e r o 24°N o -
1 T T T T T T T T T T T T T T T T T T T B T T T T T T T T T T
162 ~ T4 90 &4 &2 102 B il 907 36T s2ew 102°W o8 W 4w a0 267w 82°W
Lengituds langitude Jongitude
Skin Temperature (K) GROUND TEMPERATURE (K) GROUND TEMPERATURE (K)

Averaged Skin T scatter plot for 12-km TE © 27-MUG-2000 1200 1o 28-ALG-2000 1200 BIE 2 27-AUG-2000 120 o 28-4U6-2000 12:00
domain (TexAQS2000).

na | | | | | | | | | 0 | 1 1 | 1 1 1 | 1 1
- CNTRL - -ASSIMILATION =
y = 0.7315x + 80.002
R®=0.9433 320
. = -
* sat Assim. 12 i. B 16 i
® CNTRL
= Linear (Sat. Assim.) — - - i
| === inear (CNTRL) L7 )
iy =0.4708x + 158.09 i B i
. o R? = 0.8861
290
I

290




Largest changes in O3 concentration due to use of observed clouds
for the period of August 24, 2000, to September 1, 2000.

The differences between NO, NO2, O3 (ppb) (03,-03,, b=Sat. Observed Cloud, a=Control)
and JNO2 from satellite cloud assimilation and

control simulations for a selected grid cell over | | | | | | | | |
Houston-Galveston area.
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ADJUSTMENT

Ozone Concentration (ppb)
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Cloud Adjustment in (MM5)
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» Use satellite cloud top temperatures and cloud albedoes to determine a
maximum vertical velocity (Wmax) in the cloud column (Multiple Linear
Regression ).

» Adjust divergence to comply with Wmax in a way similar to O’Brien (1970).
» Nudge MM5 winds toward new horizontal wind field to sustain the vertical
motion.

» Remove erroneous model clouds by suppressing convective initiation.




[ SATELLITE DATA IS UTILIZED TO
CORRECT MODEL CLOUD FIELDS IN A
DYNAMICALLY CONSISTENT MANNER

Satellite
OBSERVED

Insolation

MODEL

Downward shortwave radiation in W
m=2 at 2200 UTC 6 July 1999.

(A) Derived from GOES-8 satellite.
(B) Control run with no assimilation.
(C) Run with assimilation of satellite

cloud information.

MODEL
ASSIMILATION




TRANSITIONING & STATUS OF THE PROJECT

The approach for transitioning is to

1) provide the satellite data to the users through a web based delivery
system

2) transfer the modeling components to EPA so that they will become
part of the standard release of Decision Support Tools.

STATUS OF THE PROJECT:

» Developed Web Based Delivery System
» Processing & archiving current data
» Processing & archiving old data

» Developed Regridding Software




TRANSITIONING & STATUS OF THE PROJECT (cont.)

» Transfer of code to EPA/AMD

» MMD5 code for satellite assimilation and the preprocessors were
delivered to EPA

» CMAQ code for satellite assimilation and the preprocessors were
delivered to EPA

» Satellite data for TexAQS2000 was delivered to EPA

» Worked (and continue to work) with EPA to implement the
modifications for their in-house models.

» Collaborating with EPA/AMD on benchmark activities

» TexAQS2000 and TexAQSII periods are considered for
benchmarking.

» EPA/AMD has already performed simulations for TexAQS2000
» Collaborating with EPA for transitioning to WRF modeling system
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SCHEDULE FOR THE REST OF THE PROJECT
Complete the benchmarking activity
Complete transition to WRF
Turn over the web site to DAAC (GHRC)

vV V VY V

Continue to work with EPA/AMD to implement other model components
for satellite assimilation.




WHERE DO WE GO FROM HERE
Cloud adjustment within MM5 needs to be completed

The inconsistency due to photolysis adjustment and insolation needs to
be addressed

Photolysis adjustment can take advantage of the new satellite
observations of ozone.

Calipso lidar can be used in certain situations to evaluate mixing heights
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