Influence of climate change on regional hydrology and public health

Charles Tilburg Stephan Zeeman Amy Carlson Michelle Bozeman University of New England

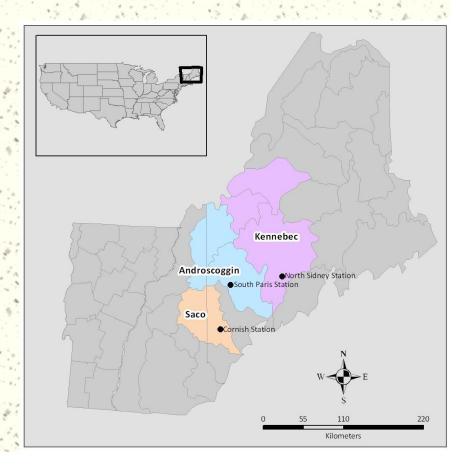
Decision Making Activities

- States need a low cost, quick method for estimating water quality.
 - # A number of states are unable to quickly test for harmful bacteria in coastal waters
 - States are unable to warn their citizens of harmful water quality.
- Accurate long term predictions of water capacity for wastewater treatment plants are necessary.
 - All states are faced with rising costs for wastewater treatment plants
 - Construction of these plants is extremely costly and resisted by municipalities
 - Inadequate facilities result in degraded water quality

Hypotheses

- 1. Coastal water quality is driven by precipitation, land use, and discharge from watersheds.
 - A regression model can be used to predict water quality.
- 2. Projected climate and land use changes will lead to robust increases in precipitation and river discharge.
- 3. Increased discharge will lead to decreased water quality in the coastal environment. Output from NASA climate models will allow for accurate predictions of discharge and water quality.

Research Objectives


- # Accurately predict for three Maine watersheds :
 - River discharge
 - Water quality in coastal waters
- # Examine effects of climate change scenarios on :
 - River discharge
 - Water quality in coastal waters
- Forecast wastewater treatment needs over a 10-20 year time period.
- # Adapt method to large scale forecasts for US East Coast

Test Case: Three watersheds in Maine

Maine watersheds were chosen due to:

- PIs proximity to decision makers
- Maine's present tools are unable to predict water quality
- Measurements of environmental variables and water quality are readily available.

Earth Science Research Results

Land cover data

- Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+)
- Time Range: 1972-Present
- Spatial Resolution: 30 240 m

Precipitation Data

- Tropical Rainfall Measurement Mission Microwave Imager (TMI)
- Time Range: 1998-Present
- Spatial Resolution: 0.25° × 0.25°
- # Climate Model Output
 - NASA/GISS 4x3 Atmosphere-Ocean Model
 - Spatial Resolution: 4° x 3°

Additional Data

Additional Precipitation Data

- National Climatic Data Center
- Spatial Resolution: variable
- Time Range: 1965-Present

River Discharge Data

- United States Geological Survey
- Time Range: 1905-Present

Water Quality Data

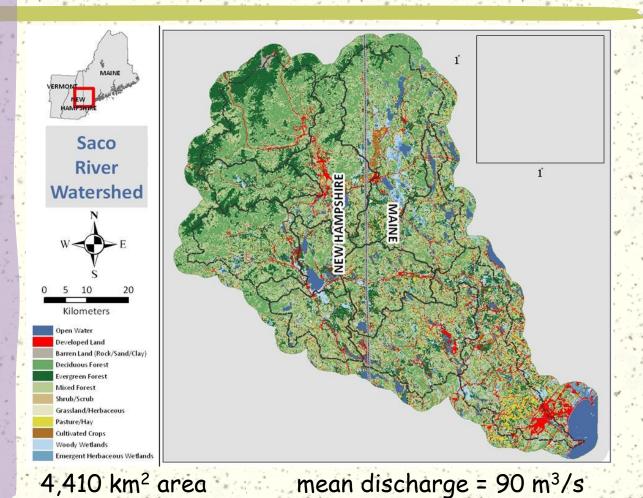
- Standard indicator bacteria
 - 🕨 E. coli
 - Fecal and total coliforms
 - Time Range: 1998-Present

Data Partners

Maine State Planning Office

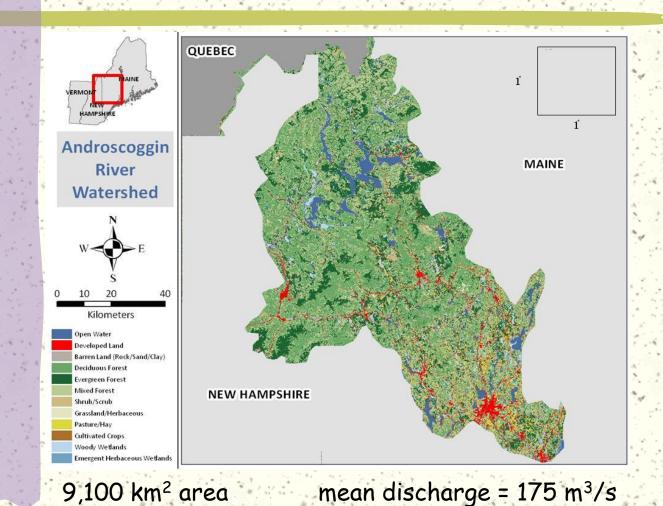
- Sample water quality at Maine beaches
- Recommend beach closings
- Make projections of waste water needs

Casco Bay Estuary Partnership:

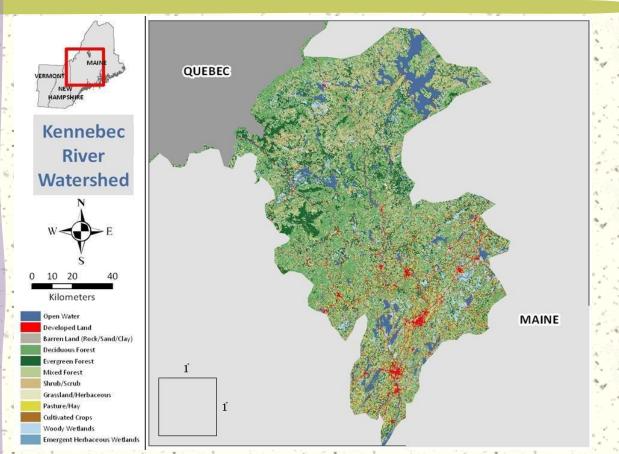

- Monitor water quality in Casco Bay estuary
- Examine links between water quality and coastal development
- Recommend clam flat closings

Saco River Corridor Commission

Monitor water quality data in Saco River

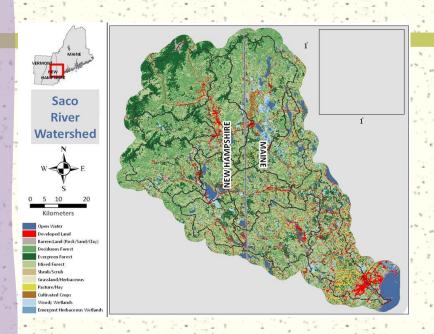

Task 1: Determine land use characteristics

LandSat – MSS, TM, ETM+ 1972- Present

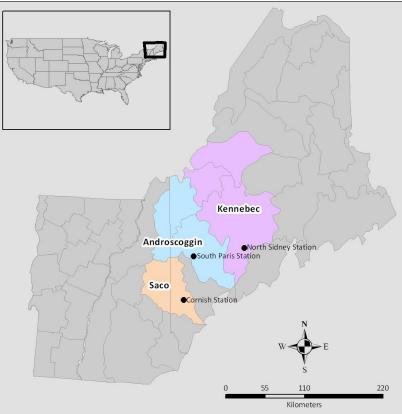

Task 1: Determine land use characteristics

LandSat – MSS, TM, ETM+ 1972- Present

Task 1: Determine land use characteristics

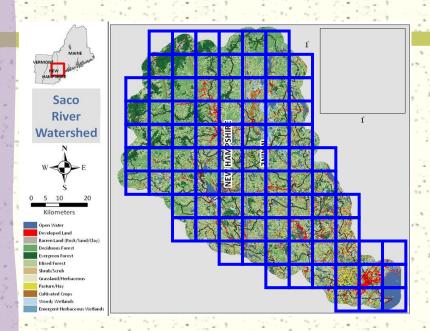

15,200 km² area

LandSat – MSS, TM, ETM+ 1972- Present

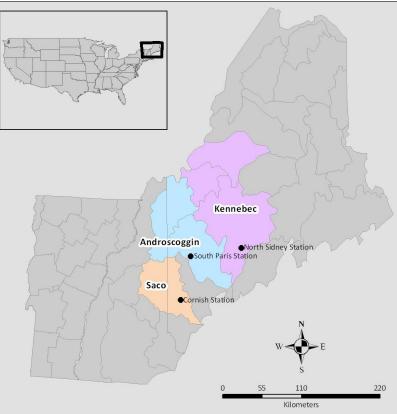


mean discharge = $258 \text{ m}^3/\text{s}$

Task 2: Determine river discharge and precipitation



TRMM Data - 1998-Present Station Data - 1965-Present Discharge Data - 1905-Present



Task 2: Determine river discharge and precipitation

TRMM Data - 1998-Present Station Data - 1965-Present Discharge Data - 1905-Present

Task 3: Use regression analysis to estimate discharge

 $D(t) = \sum a_i L_i (t - \zeta_L) P_i (t - \zeta_P)$

- D = discharge
- L =land use characterization
- P = precipitation
- a = weighting function
- $\zeta = \text{time lag}$
- j = environmental spatial coordinate

Task 4: Obtain water quality measurements

- # Data Partners
 - Maine State Planning Office
 - Casco Bay Estuary Partnership
 - Saco River Corridor Commission
- Water Quality Data
 Standard indicator bacteria
 E. coli Fecal and total coliforms
 1998-Present

Tasks 5 & 6: Use regression analysis to predict coastal water quality in 2007-2008

Tasks 7 & 8: Use regression analysis on gridded observations to predict water quality in 2007-2008

$$W_{ik}(t) = \sum_{j=1}^{M} b_{ijk} L_j (t - \zeta_L) P_j (t - \zeta_P)$$

- W_i = water quality of *i*th component
- L =land use characterization
- P =precipitation
- b = weighting function
 - = time lag
 - = environmental spatial coordinate
- k = water quality spatial coordinate

Anticipated Results

We anticipate that this study will demonstrate that our method is able to:

- # Accurately predict for three Maine watersheds:
 - River discharge
 - Water quality in coastal waters

Examine effects of climate change scenarios on:

- River discharge
- Water quality in coastal waters
- Forecast wastewater treatment needs over a 10-20 year time period.
- # Adapt to large scale forecasts of US East Coast

Project Timeline

		2009				2010												
Task	9	1 0	1 1	1 2	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2		
Task 1. Determine land use characteristics																		
Task 2. Determine river discharge and precipitation																		
Task 3. Predict river discharge and validate with observations.																		
Task 4. Obtain water quality measurements.																		
Task 5. Construct regression model to estimate water quality.																		
Task 6. Predict water quality and compare with actual observations.																		
Task 7. Interpolate available measurements of precipitation to grid resolution of NASA/GISS 4x3 Model.																		
Task 8. Downscale the griddedobservations and use the regression																		
model to hindcast water quality. Prepare final report to NASA																		
Deliver model to NASA																		

Alignment with NASA Research Priorities - NASA's *Science Plan*

- # Science Mission Directorate 2007-2016.
 - Objectives related to Earth Science:
 - How is the global Earth system changing?
 - How does the Earth system respond to natural and human-induced changes?
 - What are the consequences for human civilization?
 - How will the Earth system change in the future?

