

Enhancing EPHT with Satellite Driven Particle Exposure Modeling and Epidemiology

Yang Liu, Jeremy Sarnat, and Mitch Klein Emory University

Dale Quattrochi, Bill Crosson, Mohammad Al-Hamdan, Maury Estes, and Sue Estes *MSFC/USRA* 

Judy Qualters, Paul Garbe, Helen Flowers, and Rish Vaidyanathan CDC

September 22, 2009

- Reasonably strong association between satellite AOD and PM<sub>2.5</sub>
- Limited coverage of current PM health indicators in Tracking Network
- High computational cost of HBM estimates

- Extend the spatial coverage of the PM<sub>2.5</sub> indicators in Tracking Network with satellite data
- Provide timely estimates of county average PM<sub>2.5</sub> health indicators
- Evaluate satellite PM<sub>2.5</sub> estimates as a alternative exposure data source in environmental epidemiologic studies and using independent ground sampling

#### **Project Components**

#### □ A: integration of Earth science data (Year 1)

- Spatially and temporally match various data sources to a defined master grid in study domain
- □ B: PM<sub>2.5</sub> exposure modeling (Year 2)
  - Develop spatial statistical models to estimate PM<sub>2.5</sub> concentrations and compare with existing Tracking datasets and independent field measurements
- C: PM<sub>2.5</sub> health effects modeling (Year 3)
  - Associate model estimated PM<sub>2.5</sub> concentrations with cardiorespiratory ED visits in an epidemiological model, and compare effects with conventional methods

# **Project Timeline**

| Task                                               | Year 1 |    |    |             | Year 2 |    |          |    | Year 3 |    |          |    |
|----------------------------------------------------|--------|----|----|-------------|--------|----|----------|----|--------|----|----------|----|
| UTECHNOLOGETA.                                     | Q1     | Q2 | Q3 | Q4          | Q1     | Q2 | Q3       | Q4 | Q1     | Q2 | Q3       | Q4 |
| Component A:                                       |        |    | -  | -           |        | 8  | ÷        | ÷  |        | 1  |          |    |
| Develop master grid (Emory)                        |        | -  | 1  | 1           |        | ÷  | :        | :  |        | ÷  | :        | :  |
| MISR/GOES/NARR collection (Emory)                  |        | -  |    | - 11-0<br>- |        | 2  | :        | :  |        | 1  | ÷        | :  |
| MODIS/OMI/land use/EPA collection (MSFC)           |        |    |    | -           |        |    | :        |    |        | ÷  | :        |    |
| Data integration into master grid (Emory & MSFC)   |        |    | 1  | -           |        | 2  | ÷        | -  |        | ÷  | -        |    |
| Sampling filter preparation (Emory)                |        | :  | i. | 2 <b>.</b>  | Re al  | ÷  | ÷        | :  |        | ÷  | :        | :  |
| Component B:                                       |        | -  | -  | -           |        | -  |          | -  |        | -  | -        |    |
| AOD data validation (Emory)                        |        | 1  | -  | -           |        |    | ÷        | 1  |        |    | :        |    |
| Pilot test for sampling (Emory)                    |        | 1  | :  | :           | 13     | •  | <b>-</b> | -  |        | 5  | :        | :  |
| Final satellite data generation (MSFC)             |        | ł. | ÷  | :           |        |    | <b>-</b> | -  |        | 1  | :        |    |
| HBM PM data preparation in domain (CDC)            |        | -  |    | -           |        |    |          | ē. |        | ÷  | ÷        | :  |
| Generate satellite PM estimates (Emory)            |        | :  | ÷  | ÷           |        | i  | -        |    |        | ÷  | :        | :  |
| Satellite PM comparison with HBM (CDC)             |        | -  | -  | 3           |        | -  | -        |    | 4      | 1  | :        | 2  |
| Begin prospective validation sampling (Emory)      |        | 1  | -  | 1           | 0.40   | -  |          | -  |        | ÷  | :        | :  |
| Component C:                                       |        |    |    |             |        |    |          |    |        |    |          |    |
| Final satellite PM generation and analysis (Emory) |        |    | 1  |             |        |    |          | 1  |        | 1  | <b>_</b> |    |
| Sample analysis, start epi modeling (Emory)        |        | 1  |    |             |        | 1  | 1        | 1  |        | 1  | <b>.</b> |    |
| Sampling and epi results comparison (Emory)        |        |    | 1  |             |        |    | 1        |    |        | 1  |          | -  |
| Assessment of benefits to Tracking (CDC)           |        |    |    |             |        |    |          |    |        |    |          |    |
| Data delivery preparation (All)                    |        | 1  | 1  | 1           |        | 1  | 1        | 1  |        | -  | 1        | 1  |
| Final report preparation (All)                     |        | 1  | 1  | 1           |        | 1  | ł        | 1  |        |    | -        | -  |

### **Study Domains**



Health study domain:
20-county Metro
Atlanta area (150 x 150 km<sup>2</sup>)

- Determined by health data availability
- Exposure modeling domain: 600 x 600 km<sup>2</sup>
  - Eliminate boundary effect of spatial models

First stage GAM: temporal variables

$$Y_{(t,site)} \sim \mu_1 + f_t(t) + f_{AOD}(t \_ AOD) + f_{cloud}(cloud) + OMI \_ type + \sum_k f_{met \_k}(met \_k)$$

Second stage GAM: temporal variables

$$\begin{split} Y_{(site)} = \overline{Y_{(t,site)} - \hat{Y}_{(t,site)}} &\sim \mu_2 + f_{AOD}(AOD_{site}) + f(population) \\ &\quad + f_{x,y}(x,y) + f(land \ use \ variables) \end{split}$$

**Final prediction** 

$$[PM2.5]_{t,site} = \hat{Y}_{t,site} + \hat{Y}_{site} = \hat{Y}_{t,site} + \overline{Y}_{t,site} - \hat{Y}_{t,site}$$

#### Year 1 Objective: Data Integration

- Satellite data: MISR (AOD, 2000 -), MODIS (AOD, cloud cover, 2000 -), GOES (AOD, 2001 -), OMI (aerosol type, 2005 -)
- PM data: EPA AQS & IMPROVE (~ 90 sites, daily concentration), HBM results (12 km gridded daily)
- Meteorology: NARR (wind, PBL, RH, etc.)
- Land use: NLCD or MODIS land use data
- Health outcome: geocoded ED visits in 20-county metro Atlanta area

# Action Plan for Year 1

- Master grid for integration: 12 km CMAQ grid
- MODIS/OMI data processing (MSFC/USRA):
  - Extract Terra & Aqua AOD separately with QA flags
  - Extract 1 km MODIS cloud cover data
  - Re-grid AOD and cloud cover data
  - Extract and re-grid OMI aerosol type data
- Land use data processing (MSFC/USRA & CDC)
  - Compare NLCD data with MODIS land use at small scale
- MSFC/USRA will complete (1) processing MODIS aerosol/cloud data, OMI and NLCD data, (2) mapping of EPA / IMPROVE data, and deliver to Emory by end of year 1.

## Action Plan for Year 1 cont'd

MISR / GOES data processing (Emory)

- Extract MISR AOD based on QA flags and re-grid
- Extract GOES AOD based on NOAA criteria and re-grid
- NARR data processing (Emory)
  - Download raw data from NCDC
  - Extract surface / profile meteorological variables
- Emory will (1) complete MISR / GOES / NARR data processing by end of year 1, and (2) start field experiment preparation at end of year 1
- Team will decide the value of MODIS land use at end of year 1