Multi-resolution Nested Dust Forecast System Feasibility Study

Karl Benedict (PI)
Earth Data Analysis Center, University of New Mexico
Chowei Yang (Co-I)
Center for Earth Observing and Space Research, George Mason University
Project Background

✧ Public Health Applications

- Adding NASA Earth Science Results to EPHTN via the NM/EPHT System (ENPHASYS - NASA DECISIONS): 2008-2011

✧ Interoperability Development & Testing

Goals

✧ Work with existing modeling cores (DREAM ETA-8, DREAM NMM)
✧ Modify model pre- and post-processors to support OGC and REST data transfer
✧ Develop algorithm for automated generation of dust forecast area(s) of interest
✧ Evaluate and report on performance characteristics of the nested model system
Earth System Models
- DREAM Eta 4-bin Model
- DREAM Eta 8-bin Model
- DREAM NMM

Earth Observations
- Historic and Current
 - Terra/Aqua: MODIS
 - Land Cover, NDVI
 - SRTM C-Band Elevation Model
- Planned Missions
 - NPP, NPOESS: VIIRS
 - Land Cover, NDVI

Predictions/Forecasts
- Daily 72-hour low-resolution dust concentration forecasts for a large model domain (i.e. southwestern US)
- Daily 72-hour high-resolution dust forecasts for local regions (i.e. 1-degree blocks) for which the low-resolution model run indicates an important dust event

Observations, Parameters & Products

Decision Support System
- SYRIS, NM EPHTS
 - Analyses
 - Linkage between PM2.5 and PM10 dust concentrations and measures of public health (i.e. hospital admissions, school absences, etc.)
 - Location and severity of recent dust events within the model domain
 - Decisions/Actions
 - Evaluation and treatment of patients in the context of additional dust concentration information available to clinicians
 - Alerts to sensitive populations in anticipation of important dust events

Value and Benefits to Society
- Timely delivery of improved information about predicted dust events to public health officials, clinicians, and the general public
- Enhanced understanding of the linkage between public health measures and modeled dust concentrations

Partnership Area

Inputs
- NASA / UNM / U of A / GMU

Outputs
- New Mexico DOH / CDC / Lubbock HD / Texas R1

Outcomes

Impacts

Integrated System Solution Diagram

NASA ROSES 2008 A.19: Multi-Resolution Nested Dust Forecast System Feasibility Study (NASA CAN NNX09AN53G)
Earth System Models
- DREAM Eta 4-bin Model
- DREAM Eta 8-bin Model
- DREAM NMM

Earth Observations
- Historic and Current
 - Terra/Aqua: MODIS Land Cover, NDVI
 - SRTM C-Band 1-km Model

- Planned Missions
 - NPP, NPOESS: VIIRS Land Cover, NDVI

Predictions/Forecasts
- Daily 72-hour low-resolution dust concentration forecasts for a large model domain (i.e. southwestern US)
- Daily 72-hour high-resolution dust forecasts for local regions (i.e. 1-degree blocks) for which the low-resolution model run indicates an important dust event

Observations, Parameters & Products

Decision Support System
- SYRIS, NM EPHTS
- Analyses
 - Linkage between PM2.5 and PM10 dust concentrations and measures of public health (i.e. hospital admissions, school absences, etc.)
 - Location and severity of recent dust events within the model domain
- Decisions/Actions
 - Evaluation and treatment of patients in the context of additional dust concentration information available to clinicians
 - Alerts to sensitive populations in anticipation of important dust events

Value and Benefits to Society
- Timely delivery of improved information about predicted dust events to public health officials, clinicians, and the general public
- Enhanced understanding of the linkage between public health measures and modeled dust concentrations

Project Focus Area

Inputs
- NASA / UNM / U of A / GMU

Outputs
- New Mexico DOH / CDC / Lubbock HD / Texas R1

Outcomes

Impacts

NASA ROSES 2008 A.19: Multi-Resolution Nested Dust Forecast System Feasibility Study (NASA CAN NNX09AN53G)
Systems Integration
Systems Integration

EDAC

GMU
Systems Integration

Global Forecast System (GFS) Data
Systems Integration

EDAC

GMU

Global Forecast System (GFS) Data

DREAM ETA-8 Bin Data
Systems Integration

EDAC

Global Forecast System (GFS) Data

DREAM ETA-8 Bin Data

Area of Interest Data and Processing Queue

GMU
Systems Integration

EDAC

Global Forecast System (GFS) Data

DREAM ETA-8 Bin Data

Area of Interest Data and Processing Queue

DREAM NMM Data

GMU

Tuesday, September 15, 2009
Systems Integration

EDAC

Global Forecast System (GFS) Data

DREAM ETA-8 Bin Data

Area of Interest Data and Processing Queue

DREAM NMM Data

GMU

Preprocessor

DREAM ETA-8 Core

Postprocessor
Systems Integration

EDAC

Global Forecast System (GFS) Data
DREAM ETA-8 Bin Data
Area of Interest Data and Processing Queue
DREAM NMM Data

GMU

Preprocessor
DREAM ETA-8 Core
Postprocessor
Preprocessor
DREAM NMM Core
Postprocessor

EDAC

GMU
Systems Integration

EDAC

- Global Forecast System (GFS) Data
- DREAM ETA-8 Bin Data
- Area of Interest Data and Processing Queue
- DREAM NMM Data

GMU

- Preprocessor
 - DREAM ETA-8 Core Postprocessor
- Preprocessor
 - DREAM NMM Core Postprocessor
Systems Integration

EDAC

Global Forecast System (GFS) Data

DREAM ETA-8 Bin Data

Area of Interest Data and Processing Queue

DREAM NMM Data

GMU

WCS

Preprocessor

DREAM ETA-8 Core

Postprocessor

Preprocessor

DREAM NMM Core

Postprocessor

Tuesday, September 15, 2009
Systems Integration

EDAC

GMU

Global Forecast System (GFS) Data

DREAM ETA-8 Bin Data

Area of Interest Data and Processing Queue

DREAM NMM Data

WCS

REST

Preprocessor

DREAM ETA-8 Core

Postprocessor

Preprocessor

DREAM NMM Core

Postprocessor
Systems Integration

EDAC

Global Forecast System (GFS) Data

DREAM ETA-8 Bin Data

Area of Interest Data and Processing Queue

DREAM NMM Data

GMU

WCS

WCS

Preprocessor

DREAM ETA-8 Core

Postprocessor

Preprocessor

DREAM NMM Core

Postprocessor

Tuesday, September 15, 2009
Systems Integration

EDAC

Global Forecast System (GFS) Data
DREAM ETA-8 Bin Data
Area of Interest Data and Processing Queue
DREAM NMM Data

WMS, WCS, WFS

GMU

Preprocessor
DREAM
ETA-8 Core
Postprocessor
Preprocessor
DREAM
NMM Core
Postprocessor

Users

NASA ROSES 2008 A.19: Multi-Resolution Nested Dust Forecast System Feasibility Study (NASA CAN NNX09AN53G)

Tuesday, September 15, 2009
Feasibility Testing

✦ Systems Integration

✓ Model pre- and post-processor implementation
✓ Data management and storage
✓ Appropriateness of implemented service standards

✦ Performance

✓ Comparison of performance (time-to-delivery) of nested model vs. dedicated large domain/high-resolution model runs
Contact Information

Karl Benedict
kbene@edac.unm.edu
(505) 277-3622 x 234
MSC01 1110, 1 University of New Mexico
Albuquerque, NM 87131

Chowei Yang
cyang3@gmu.edu