Environmental factors and population dynamics as determinants of meningococcal meningitis epidemics in the Sahel: an investigation of NASA and NOAA products

EARTH SCIENCE APPLICATIONS FEASIBILITY STUDIES 1 year: Sept 1st, 2009 – Aug 31st, 2010

IRI:	S. Trzaska (PI), M. Thomson, M. Madajewicz,
	T. Dinku, P . Ceccato, L. Cibrelus
CIESIN:	S. Adamao (Co-PI), M. Levy, G. Yetman, SA
GISS:	J. Perlwitz, R. Miller
JPL:	O. Kalashnikova

NASA Public Health Applications Program Review, Sept. 21-23, Savannah

Goddard Institute for Space Studies

The International Research Institute for Climate and Society

Meningococcal Meningitis - a few facts

Human to human transmitted bacterial infection of the meninges

Consequences

- if untreated, can lead to fatality rates greater than 50%
- despite treatment, at least 10% of patients die within 48 hours of onset of symptoms
- 10–20% of survivors develop severe neurological sequeals

Highest activity is concentrated in sub Saharan Africa

- each year affects close to 400 million people in 25 countries
- the largest recorded outbreak, in 1996, caused 250,000 cases and almost 25,000 deaths and at least 50,000 persons suffered permanent disability

Current WHO Strategy

 reactive mass vaccination with a meningococcal polysaccharide vaccine (Men Ps), to halt the outbreak, and effective case management through antibiotic treatment, to corb the lethality

Observed Meningitis Epidemics Distribution 1841-1999. (Molesworth et al. 2003)

Meningococcal Meningitis - few facts (cont.)

Environmental determinants

- Highly seasonal (dry season)
- Dry and dusty environment (*Lapeyssonnie, 1963*)
- **Negative correlation with rainfall (***Jackou-Boulama et al., 2005*)
- Onset related to seasonal wind pattern (Sultan et al., 2005)
- Interannual variability related to dust, rainfall, NDVI (*Thomson et al., 2006*)

Other determinants

- herd immunity (after epidemics, vaccination, lack of immunity due to migration)
- population density (indoors crowding, gatherings)

____age groups

Risk map of Meningitis Epidemic Outbreaks. Based on environmental suitability (Molesworth et al. 2003)

Mean Seasonal Cycle of Atmospheric Circulations in West Africa

N Hemisphere winter

- dry season in the Sahel
- NEasterly winds (Harmattan) bring dry and dusty air from the Sahara
- favorable conditions for meningitis

- the whole system migrates N & S
- rainy season shorter in the N than in the south

N Hemisphere summer

- rainy season in the Sahel
- NEasterly winds (Harmattan) retreat to the north and are replaced by moist and dust –free SWesterly monsoon flow
- meningitis stops in high humidity conditions

Meningitis Mean Seasonal Cycle

Cluster Analysis: weekly incidence at district level in Burkina Faso, Mali, Niger

Weeks 5-20, standardized, 4 classes

Earlier onset and termination of meningitis season in southern districts

- Northward progression of the epidemic season
- Population density effect?

Project Context

EARTH SCIENCE APPLICATIONS FEASIBILITY STUDIES

TARGETED DECISION SYSTEMS

- WHO operating procedures for Men control in Africa
- Planned mass preventive MenA vaccine (Meningitis Vaccine Project)
- IRI PAHO/WHO Collaborating Centre on early warning systems for malaria and other climate sensitive diseases

MERIT (Meningitis Environmental Risk Information

Technologies Project)

joint effort of the World Health Organization (WHO) and partners to

- utilize more effectively existing knowledge of the epidemiology of meningococcal meningitis to improve current control strategies;
- to improve the understanding of the relationship between bacterial meningitis and environmental parameters;
- to use this understanding to provide more timely warnings of the onset of meningitis epidemics;
- and to use this knowledge to improve the efficacy of meningitis prevention and constrategies.

Endorsed by GEOSS

3rd Annual Meeting, Niamey, Niger, Nov. 9-11, 2009

Project Objectives

 GIS-based risk mapping system *integrating* epidemiological, demographic and environmental factors for planning preventive and curative actions.

Demonstration for 42 districts in Niger

Weekly case data 1986-current, quality controlled

Specific Earth Science results: Explore the potential of satellite and model data as inputs to meningitis risk mapping.

Epidemiological factors:

- Immunological state of the population

Population factors:

- Population surface by age and sex based on GRUMP
- Population mobility

Environmental factors:

- Mineral dust: in situ (AERONET), satellite (NASA MISR)
- Sporadic rain episodes: in situ, TRMM
- Predictability of atmospheric circulations and mineral dust over the S

Project Objectives (cont.)

Statistical model forecasting the likelihood of epidemic threshold to be crossed (or not) at a given district at different time leads (before, at the beginning and during the season)

Detect the optimal combination of predictors at different time lags

Evaluate model's skill (capacity to predict past epidemics and their timing)

Demonstrate that different decisions can be made based on the available forecasts

ROSES-2008 Public Health: Environmental factors and population dynamics as determinants of meningococcal meningitis epidemics in the Sahel: an investigation of NASA and NOAA products. (PI Sylwia Trzaska)

Earth System Models

Model name, type, predictive capabilities, assimilations, other info

GISS dust model
embeded in GISS ModelE

- IRI seasonal forecast outputs (ECHSM 4.5 GCM)
- NCEP Reanalysis

Earth Observations

(e.g., satellite, in situ)

- MISR (2000-2008
- AERONET (1995-2008)
- Rain gauges (1995-2008)
- TRMM (1998-2008)

 Potentially in the future GPM - Global Precipitation Measurement

Predictions/Forecasts

Specific products or types of predictions from the models

- Climate conditions in West Africa: Probability of sporadic rainfall events Seasonal cycle of low level circulations and its interannual variations Simulated aerosol load
- Population:

Time series of population surfaces by age and sex

Estimation of migration flows and scenarios

Specific interoperability, data fusion, and other information technology to support integration

Merging climate, population and immunological data via generalized linear model

GIS-based risk mapping

Specific observations products or parameters feeding the DSS

Aerosol monitoring Rainfall monitoring GPW3; GRUMP; Migration data (several sources); population by age and sex

Past epidemics and vaccination campaigns

Observations, Parameters & Products

Decision Support Systems, Assessments, Management Actions

- •WHO meningitis Early Warning System
- •WHO reactive meningitis vaccination
- •Meningitis Vaccine Project

Specific analyses to support the decision making

Maps of level of risk of meningitis in Niger based on: :

- Monitoring of meteorological and aerosol conditions
- Predicting seasonal characteristics of aerosols and climate conditions
- Estimation of more-at-risk population groups
- Monitoring immunological state of the population

Specific Decisions / Actions

- WHO issuing Alerts and Warnings
- Management of Vaccine stockpiles including resource mobilization
- Planning of preventive vaccinations

Value & Benefits to Society

Improvements in the decisionmaking, decisions, and actions

(actual, expected, estimated)

- Improved spatial risk mapping
- Improved lead time for alerts and warning leading to enhanced preparedness
- Better management of vaccine stockpiles and optimization of vaccine allocation
- Better surveillance targeted to regions at highest risk

Quantitative and qualitative benefits from the improved decisions

(actual, expected, estimated)

• Enhanced lead-time for decision

- Improved preparedness at international and national levels
- More targeted allocation of country public health resources
- Estimated better protection of population with reduced economic losses
- Better management of vaccine (stockpiles, vaccination campaigns)

Project Participants and Their Responsibilities

IRI:

- analysis of relationships between atmospheric conditions & dust and meningitis, analysis of their predictability; construction and evaluation of the model - S. Trzaska, L. Cibrelus, M. Thomson (adv.)
- exploration of the potential of satellite data P. Ceccato, T. Dinku
- evaluation of decision improvement potential M. Madajewicz

CIESIN:

- population mapping by age structure, urban/rural distribution, population mobility, georefernced datasets, construction of predictive model - S. Adamo, G. Yetman
- data integration and model construction M. Levy

GISS:

- aerosols simulations J. Perwitz
- validation and interpretation of model results R. Miller (adv.)

JPL:

• MISR data and related technical expertise: O. Kalashnikova

Timeline

	Sep 2009	Oct 2009	Nov 2009	Dec 2009	Jan 2010	Feb 2010	Mar 2010	Apr 2010	May 2010	Jun 201	
Data formatting	_										
Preliminary model											
Analysis of aerosol/men and atmos/men rel ationship	-		ting								
MISR data											
Aerosol simulation											
Analysis of aerosol and atmos predictability											
■Pop analysis											
Model Construction and Evaluation											
Integration into GIS											
Evaluation of Decision improvement											
Report and Write-up											