

Characterization of Tick-borne Disease Risk in Alabama using NASA Earth Observation Systems

NASA Applied Sciences' DEVELOP National Program Marshall Space Flight Center/University of Alabama at Birmingham

Presenter: Steve Padgett-Vasquez

Project Methodology

Community Concerns

- Currently, many state officials and physicians do not recognize the presence of Lyme disease and STARI in Alabama.
- The general public is not aware of the basic measures to prevent Tick-borne Illnesses (TBI).
- Objectives: Increase awareness of TBI and identify likely tick infested areas.

Project Methodology

Partners

- Dr. Robert Carter (JSU)
- Birmingham Lyme
- Camp Coleman
- UAB's Outdoor Pursuits
- Dr. Leslie McClure (UAB School of Public Health)

Study Area & Period

- Talladega National Forest, Fort McClellan, and Birmingham, Alabama
- 5 terms, Summer 2009-Fall 2010

Satellite Imagery Utilized

- Landsat TM
- ASTER (Terra)

Science Advisor

Jeffrey C. Luvall, Ph.D. NASA Marshall Space Flight Center

Lab Location

Lab of Global Health Observation

Director: Sarah H. Parcak, Ph.D.

University of Alabama at Birmingham

Lyme Disease (LD)

- 1975-clustering of children ill with possible juvenile rheumatoid arthritis seen in Lyme, Connecticut .
- Common symptoms: Erythema migrans, fever, fatigue and headache.
- 1982-Willy Burgdorfer found spirochetes in midgut of ticks sent from Shelter Island, NY, a place with endemic LD.
- The etiologic agent was named Borrelia burgdorferi.
- If left untreated, may result in long term effects: arthritis, neurocognitive difficulties or fatigue.
- First documented case of LD in Alabama was reported in 1986.

CDC Case Map

TOTAL LYME CASES REPORTED BY CDC 1990-2006

Blacklegged tick distribution

Distribution of other tick species

Other tick-borne Illnesses (TBI)

Confirmed Vector TBI Blacklegged Tick E Lone Star Tick F

- American Dog Tick
- Brown Dog Tick-
- Gulf Coast Tick /

- Anaplasmosis
- Babesiosis
 - Erlichiosis
 - Rickettsiosis
 - Rocky Mountain Spotted Fever
 - STARI
- Tularemia

Primary Prevention

- Reducing exposure to ticks is the best defense against TBI.
- Primary personal protection methods:
 - Wear protective clothing
 - Wear light colored clothing
 - Apply tick (insect) repellants
 - Perform tick checks
 - Avoid or reduce time spent in high risk areas

CDC Prevention Recommendation

- The CDC Lyme disease prevention webpage states: "Ask your local health department and park or extension service about tick infested areas to avoid."
- However, <u>NO</u> local health department and park or extension service in the state of Alabama provide information about tick infested areas.

State of Alabama Courtesy of Google Earth

Remote sensing is a technique used to analyze emitted and reflected energy from earth, in multiple parts of the electromagnetic spectrum, using aircraft and satellites.

Environmental Factors for Ticks Populations

- Temperature: -10 to 35°C.
- Relative humidity: no lower than 80%.
- Vegetation: forest cover and decaying vegetation help maintain relative humidity.
- Soil moisture helps tick avoid desiccation.

Normalized Difference Vegetation Index

- Creates a ratio between
 -1 and 1 using the visible and NIR bands
- Helps separate areas with vegetation and those without.
- Can track vegetation vigor.

$$NDVI = \frac{(NIR - RED)}{(NIR + RED)}$$

ASTER NDVI and SM

Tick Life Cycle

Limitations

- Small sample size.
- CDC case data does not indicate time of year or location of contraction.
- Vegetation by itself may not be a good indicator of tick presence.
- Need to consider the ecology of the vector and hosts.

Tick Hosts

- Small mammals
 - For larval and nymphal stages
- White-tailed deer
 - For adult stage
- Over 30 types of animals and many species of birds may be hosts

Ecological factors

- What the are the preferred environments of the hosts?
- How can we measure environmental factors through remote sensing?
- How can we explain tick distribution?

Fort McClellan

Fort McClellan

Methodology

ASTER image

Methodology

Plot 1 (ASTER)

Overall ASTER image

Methodology

Plot 1 (ASTER)

Overall ASTER image

Plot 1 (NDVI)

Results – % NDVI class: plot detail

Results – Table 1

Overall tick density by plot and species

	<u>Amblyomma americanum N=1095</u>			<u>Dermacentor variabilis N=17</u>			
Plot	ALSF	ALSM	LSN	DOG M	DOGF	DOGN	Total
1	8	7	67	2	3	1	88
2	4	11	108	1	0	2	126
3	1	2	13	0	0	0	16
4	11	17	175	1	0	0	204
5	6	15	172	2	1	1	197
6	8	5	37	1	0	0	51
7	5	3	25	0	0	0	33
8	6	6	271	0	0	0	283
9	8	9	74	0	0	0	91
10	0	2	9	0	0	0	11
11	2	1	2	0	1	0	6
12	0	0	5	0	1	0	6
Total	59	78	958	7	6	4	1112

General Conclusions

1) <u>Difference by species</u> - Abylomma Americanum made up 98.5% of all ticks counted

2) Difference by stage of development - Nymphal ticks represented 86.5% of the total ticks sampled

3) Difference by plot – Tick counts ranged by plot from 283 (25% of total) to 6 (>%1 of total)

Results – % NDVI class analysis

NDVI class proportion by plot sorted by tick count

Results – Integrated image variables

Results – Image variables by tick count

Plot	Edge length (m)	Patch area (m ²)	Distance to nearest edge (m)	Edge length/ Patch area ratio	Tick density
1	523.52	5747.2	17.19	9.11%	88
2	669.51	7460.5	15	8.97%	126
3	2217.65	107075.1	46.15	2.07%	16
4	1372.8	59244.7	8.97	2.32%	204
5	432.44	3863.8	15	11.19%	197
6	1241	43837.1	58.29	2.83%	51
7	1346.49	156,744	58.59	0.86%	33
8	1217.2	63711.5	46.24	1.91%	283
9	854.86	91382.3	1.61	0.94%	91
10	153.55	199610.57	55.65	0.08%	11
11	1185.9	188249.8	77.27	0.63%	6
12	655.55	198277.6	33.81	0.33%	6

Edge length/Patch

Conclusions

- Tick density inversely associated with plots where > 90% of all area is over NDVI of 0.60.
- Satellite remote sensing can identify environmental factors associated with likely tick habitats.
- What is the next step?
 - Statistical analysis to be performed.
 - RT-PCR
 - Initial findings: forest fragmentation, the theory of island biogeography, and meta population dynamics to be explored.
 - Risk Perception survey created and awaiting IRB approval

Transition to Partner

Partners:

Alabama Department of Health Birmingham Lyme Camp Coleman

Benefits to Partner

- Identified high risk areas
 Map of high risk areas
- Camp Coleman
 - 5 presentations on prevention and treatment
 - Reached approx 40-50 campers each session

Project Transition Plan

- Best practices document
 - Document can be used as a guide for continued outreach at Camp Coleman or as a basis for new effort by Birmingham Lyme and the Alabama Department of Health

Outreach

MSFC/UAB Team Members Summer 2009-Fall 2010

• Joshua Harden, B.S.

- Joe Olson
- Connor Whitley
- Michael Behring, M.S.
- Taylor Poston, M.P.H.
- Damien Willis, M.S.
- Jonathan Adams, M.S.
- Rusty Nall, B.S.
- Stephen L. Firsing III, M.P.A., M.A.
- Emily G. Capilouto
- Robyn Hyden, B.A.
- Kathryn Jackson
- Kyle Levy, M.S.
- Marilyn McAllister, M.S.

Foreign Nationals

- Steve Padgett-Vasquez, M.S. (Honduras)
- Jin Huang, B.S. (China)
- Nathan Renneboog, B.S. (Belgium)
- Sarah Hemmings, M.S. (Canada)
- Meghan Tipre, B.D.S. (India)
- Zhang Yan, M.P.H. (China)
- Kathryn Roa, M.D. (Philippines)
- Shveta Setia, B.D.S. (India)
- Lili Xie, M.D. (China)

Adivsors

- Dr. Jeffrey C. Luvall- NASA MSFC Advisor
- Dr. Sarah H. Parcak- LGHO Director
- Dr. Donna Burnett- Science Advisor

Fort McClellan

Fort McClellan

Imagery Date: Jan 8, 2004

33° 43.095' N 85° 46.265 vv elev

Island Biogeography

Island Biogeography

Results - 500 m diameter NDVI plots

