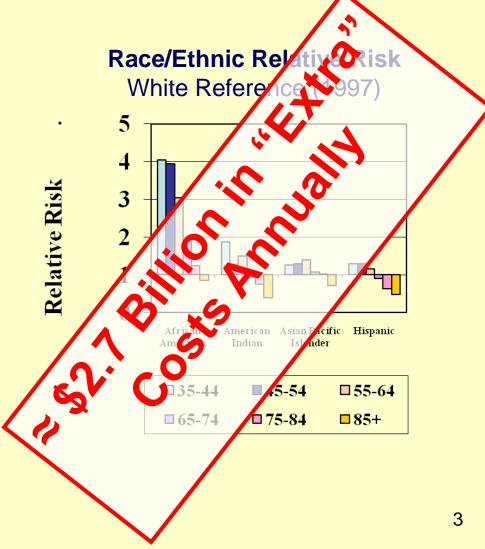
Successfully Integrating NASA Data Into an On-going Public Health Study and Linking NASA Environmental Data with a National Public Health Cohort Study to Enhance Public Health Decision Making

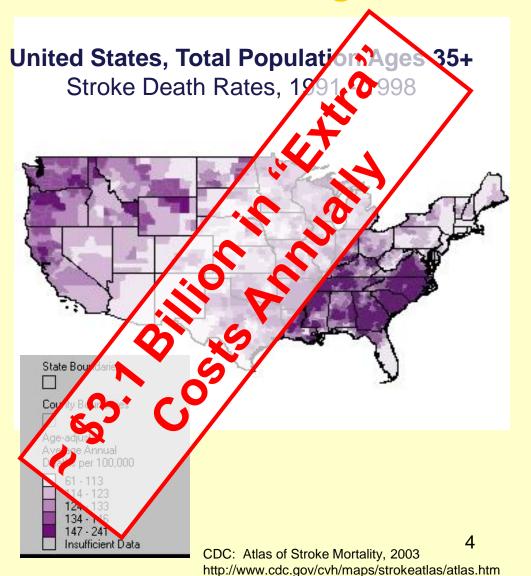
Leslie Ain McClure, PhD
Associate Professor of Biostatistics
University of Alabama at Birmingham


September 28, 2010 San Antonio, TX

Outline

- What is REGARDS?
- Objectives of current funding
- Progress to date
- Goals for the next year

Why REGARDS? Racial Disparity



Higher prevalence of hypertension and diabetes, and lower SES are clearly contributing to excess

But:

- Only 30% to 50% of the excess is mediated by these factors
- Why is there a higher incidence of hypertension and diabetes in AA?

Why REGARDS? Regional Disparity

- 10 published hypothesized causes
 - AA higher in south
 - Death certificate coding
 - Higher case fatality
 - Poorer risk factor profile
 - Environmental factors
 - Lower SES
 - Poor quality health care
 - Genetic factors
 - Lifestyle choices
 - Infection rates
- Little data evaluated contributions

Why REGARDS?

Regional Disparity

Coding of Death Certificates Environmental Exposures Infection Rates Case Fatality **Unlikely** Lifestyle Choices Genetic Factors Proportion of AA Prevalence of CVD Risk Factors **SES Differences** Quality of Health Care Causes

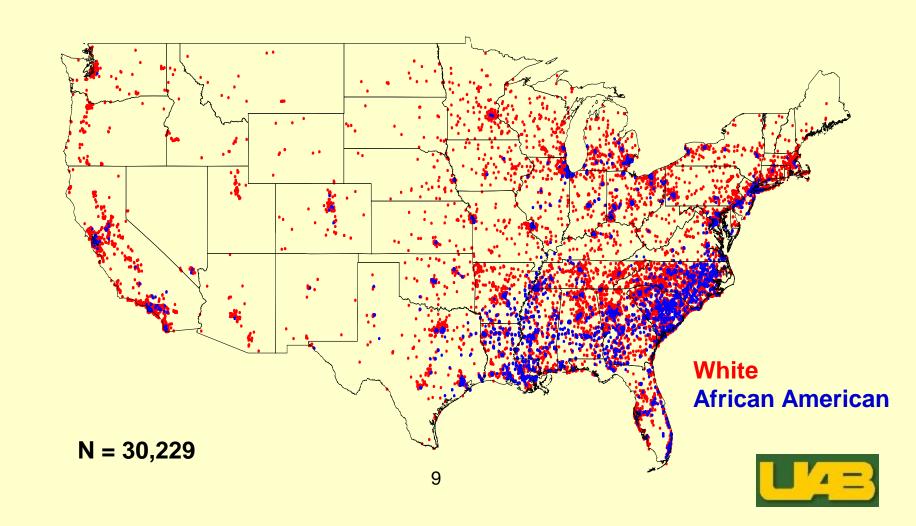
Uninvestigated Causes

REGARDS

- Provides national
 - Stroke incidence data
 - Stroke risk factor description
- Understand relationship between risk factors and stroke incidence
- Assess potential
 - Mediation of racial and geographic disparities associated risk factor adjustment
 - Differential racial and geographic susceptibility in role of risk factors (interactions)
- Provide repository (including genetic materials)

REGARDS

- Addition of longitudinal measures of cognitive function
 - Epidemiology of cognitive change among a national cohort
 - Cognitive function as subclinical measure of vascular health
- Ancillary studies (partial list)
 - Myocardial infarction endpoints
 - Environmental exposures through satellite measures
 - Renal endpoints
 - Bone fracture endpoints
 - Racial disparities in caregiver burden
 - Additional analytes (phosphorous, sodium, etc).



REGARDS Study Population

- Longitudinal population-based cohort of 30,229 volunteers aged 45 and older
- Simple random sampling with geographic representation
 - 21% from the buckle of the stroke belt (goal was 20%)
 - 35% from the stroke belt (goal was 30%)
 - 44% from the rest of the contiguous US (goal 50%)
- Racial representation: 42% African American / 58% white (goal was 50/50%)
- Sex representation: 45% male / 55% female (goal was 50/50%)

REGARDS Study Population

Overarching Goals of this Research

- Characterize PM_{2.5}, solar insolation, and land surface temperature using NASA satellite observations, EPA ground level data, and other national datasets
- Link these data with data from REGARDS, in order to assess whether these factors impact cognitive decline
- Disseminate the dataset to end-users for decision making through CDC WONDER

Objectives of the Current Project

- 1. Produce daily gridded estimates of PM_{2.5} for the conterminous US for the years 2003-2008 from MODIS Aqua data
- Produce daily gridded solar insolation (SI) maps for the conterminous US during the same period using data from the NARR
- 3. Produce daily gridded and surface temperature (LST) maps over the conterminous US during the same period using data from MODIS
- 4. Link the estimates of PM_{2.5}, SI and LST with data from the more than 30,000 participants from the REGARDS study.

Objectives (continued)

- 5. Determine whether exposure to PM_{2.5} or SI is related to the rate of cognitive decline among participants in the REGARDS study, independent of other known risk factors for cognitive decline
- 6. Examine the relationship between the estimated PM_{2.5} and SI and other health-related conditions among REGARDS participants, including diminished kidney function, hypercholesterolemia, hypertension, and inflammation (CRP)
- 7. Deliver daily gridded environmental data sets (PM_{2.5}, SI and LST) to CDC-WONDER for the 2003-08 period

Why study cognition in a stroke cohort?

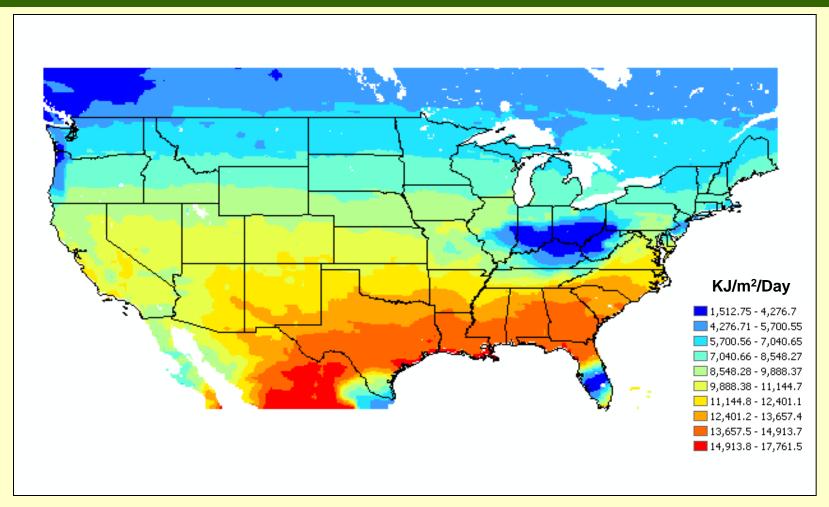
- Cognitive decline is a co-primary outcome in the REGARDS study
 - Prevention of cognitive decline is a huge public health concern, with a rapidly aging US population
 - Little data available about cognitive function over time, particularly in African Americans
 - Has been shown to be a sub-clinical marker of vascular disease

Year 1 Activities

- Excellent progress made on each objective of the research
 - SI data are processed and linked to REGARDS
 - LST data are processed and ready to be linked to REGARDS
 - $-PM_{2.5}$ is in process
 - Cognitive data are almost complete
 - Discussions regarding data transfer to CDC WONDER are underway

SI Data

- Early in the study, the decision was made to use the NLDAS dataset for solar insolation, rather than the NARR
 - More data are available both temporally and spatially
 - Hourly data
 - 12 km grid



SI Data

- Data were processed:
 - Data were downloaded from NLDAS for the period between 2003 and 2008
 - Daily maximum, minimum and average temperature were computed for each of 120,000 grid cells
 - Daily total solar insolation computed for the same 120,000 grid cells
- Data were linked
 - Each REGARDS participant was assigned a grid cell based on their longitude and latitude, and 4 tables containing the daily data for each measurement for each participant was produced

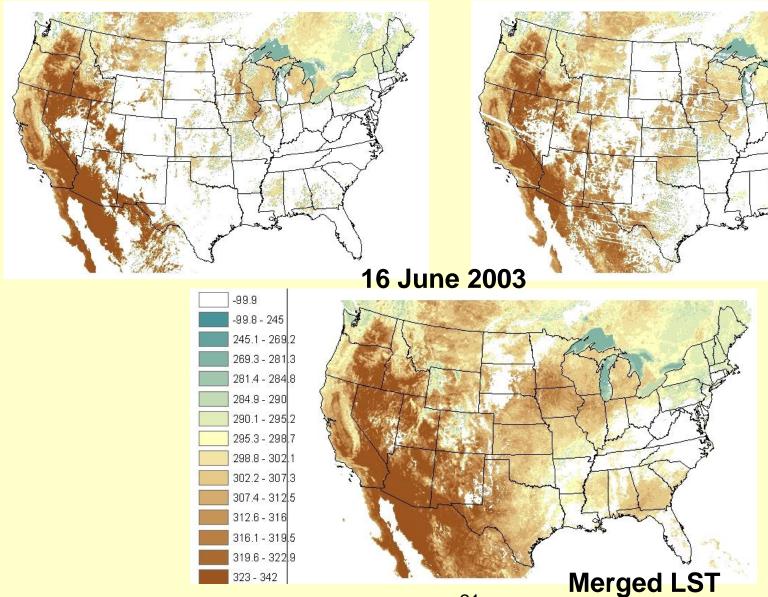
NLDAS Solar Insolation on January 1, 2008 (12 km)

SI Data

REGARDS Participant ID	County	State	Day1 Solar Insolation	Day2 Solar Insolation	 Day365 Solar Insolation
1					
2					
3					
30,200					

LST Data

- Land surface temperature data were obtained by an algorithm merging the Aqua and Terra MODIS satellite data measurements
 - Aqua has a daytime pass (approximately 1:30 p.m.), but is missing when there is cloud cover
 - Terra provides has a morning pass (approximately 10:30 a.m.)
 - Algorithm developed to fill in missing Aqua values using time-adjusted Terra values


LST Data

- This algorithm (developed by Bill Crosson, Gina Wade & Sarah Hemmings) utilizes season-specific estimates of average differences between Aqua and Terra measurements
 - The missing values are then filled in with the Terra values, adjusted by the season-specific difference

Aqua LST (1:30 PM)

Terra LST (10:30 AM)

LST Data

- Data were processed:
 - Aqua and Terra MODIS data were downloaded for the period between 2003 and 2008
 - Data were "mosaiced" as described above
- Manuscript describing the methods is in process, pending preparation of nighttime LST
- Data linkage is forthcoming
 - Dataset will be prepared in a similar format to
 the SI data

PM_{2.5} Data

- MODIS AOD data are used to generate a smooth PM surface based on a complex algorithm
 - Estimate PM based on regression equation
 - Bias adjustment procedure
 - Smoothing algorithm
- A new relationship between AOD and PM has recently been published, which is defined by EPA region and season
 - This requires translation of the EPA regions to longitude and latitude

PM_{2.5} Data

- Data processing is in progress:
 - Programming of the new regression equation for each region and season has been completed
- Next steps:
 - Run the updated algorithm that simultaneously estimates the PM2.5, performs the bias adjustment, and generates the smoothed surfaces
 - Link these estimates with the REGARDS participants

Cognitive Data

- The REGARDS Working Group on Cognitive Decline has spent many hours discussing how to define "decline" in the cohort
- Several options are available, and the datasets will be ready in mid-October
 - Six Item Screener (SIS): Coarse screener of cognitive function
 - Word List Learning: Measures memory and learning
 - Animal Naming & Letter F: Measure executive function

Planned Year 2 Activities

- Complete the production of the PM2.5 data
- Complete the linkage of each of the environmental datasets with REGARDS participants
- Begin analyses of the linked data
 - Cognitive decline and solar insolation (Kent dissertation)
 - Cognitive decline and PM2.5
- Prepare REGARDS datasets for secondary analyses
- Continue to work with CDC WONDER to ensure a smooth data transfer

Major Deliverables & Time Schedule

- Major deliverables and time schedule:
 - Solar insolation dataset (ahead of schedule)
 - Preparation and production: 10/2009-6/2010
 - Linkage with cognitive decline data: 7/2010-12/2010
 - Analysis: 1/2011-9/2011
 - LST dataset (ahead of schedule)
 - Preparation and production: 10/2009-6/2010
 - Linkage with cognitive decline data: 7/2010-12/2010

Major Deliverables & Time Schedule

- Major deliverables and time schedule:
 - PM_{2.5} dataset (on schedule)
 - Preparation and production: 10/2009-3/2011
 - Linkage with cognitive decline data: 4/2011-9/2011
 - Analysis: 10/2011-3/2012
 - Analysis of secondary outcomes: 10/2011-6/2012
 - Transition to end-users, through CDC WONDER: 4/2012-9/2012
 - Preparation of final research report: 4/2012-9/2012

		Year 1			Year 2			Year 3					
Task		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1a	Production of LST data set												
1b	Production of solar insolation data set												
1c	Production of PM _{2.5} data set												
2a	Linkage of LST and cognitive decline data sets												
2b	Linkage of insolation and cognitive decline data sets												
2c	Linkage of PM _{2.5} and cognitive decline data sets												
3a	Analysis of insolation and cognitive decline												
3b	Analysis of PM _{2.5} and cognitive decline												
4a	Analysis of insolation and secondary outcomes												
4b	Analysis of PM _{2.5} and secondary outcomes												
5	Transition to end-users through CDC WONDER												
6	Final research report				29								

Collaborators

<u>UAB</u>

Kalyani Peri

Shia Kent

George Howard

NASA

Dale Quattrochi

Douglas Rickman

CDC

Sigrid Economou

USRA

Mohammad Al-Hamdan (co-PI)

William Crosson

Maury Estes

Sue Estes

Gina Wade

Sarah Hemmings

