Using NASA Satellite Aerosol Optical Depth Data to Create Representative PM$_{2.5}$ Fields for Use in Human Health and Epidemiology Studies in Support of State and National Environmental Public Health Tracking Programs

Amy K. Huff
Battelle Memorial Institute
huffa@battelle.org
Project Overview

• ROSES 2010 Earth Science Applications Feasibility Studies: Public Health

• Received funding August 18, 2011

• 2-year period of performance

• Co-Investigators:
 – Stephanie Weber, Battelle
 – Dr. John Braggio, Maryland Dept of Health and Mental Hygiene
 – Thomas Talbot, New York State Dept of Health

• Collaborators:
 – Eric Hall, National Exposure Research Laboratory, USEPA
 – Fred Dimmick, retired USEPA
Project Motivation

• Studies that analyze human health effects of exposure to atmospheric PM$_{2.5}$ use measurements from USEPA’s national ground-based monitor network

• PM$_{2.5}$ network has significant gaps in coverage

• Traditional methods that interpolate gaps in monitor data (e.g., kriging) may not capture spatial trends

• A new approach is needed to provide representative PM$_{2.5}$ fields for health studies
Approach

- Combine PM$_{2.5}$ monitor network data, NASA satellite aerosol optical depth (AOD), and CMAQ air quality model predictions to make a single dataset

- Addition of AOD data is expected to create more temporally and spatially representative PM$_{2.5}$ concentration field compared to only monitor data and/or CMAQ

- Use EPA/Battelle Hierarchical Bayesian model (HBM) to combine datasets
 - In areas where monitors are present, HBM gives most weight to monitor data
 - In areas where monitors do not exist, HBM will use estimates of surface PM$_{2.5}$ concentration from AOD
 - In areas where no AOD data are available, HBM will use CMAQ
Aerosol Optical Depth (AOD)

- AOD is a measure of scattering and absorption of visible light in vertical column between TOA and Earth’s surface.
- AOD is proportional to PM$_{2.5}$ concentration; high AOD corresponds to high PM$_{2.5}$.
- Values range 0-1.
- Project will use AOD measured by MODIS on Terra and Aqua satellites.
Benefits of Using Satellite AOD:

- Information in areas where monitors do not exist
- Captures spatial distribution of PM$_{2.5}$ field
- Measured value so it reflects actual concentrations of PM$_{2.5}$ in atmosphere (unlike CMAQ model)

Challenges and Risks:

- AOD represents particles in vertical column of atmosphere, not at surface
 - Statistical correlation studies widely accepted to estimate surface PM$_{2.5}$ concentration from AOD
- CMAQ output is not an observation (higher uncertainty)
- 12×12 km spatial resolution of combined datasets (set by CMAQ output) may be too coarse for use in health studies
 - EPA recommends CMAQ 12×12 km for EPHT program datasets
Approximate Study Regions

- Baltimore, MD
- New York City, NY
- 2004-2006
Experimental Design

• Download and prepare datasets:
 – PM$_{2.5}$ monitor data: USEPA’s Air Quality System (AQS)
 – MODIS AOD data: NASA LAADS; convert to PM$_{2.5}$ surface concentrations using season- and location-dependent relationships in Zhang et al., 2009
 – CMAQ model output: provided by USEPA

• Use HBM to create combined PM$_{2.5}$ datasets: “CMAQ-HBM” and “AOD-HBM”

• Compare PM$_{2.5}$ datasets to health outcome datasets:
 – Asthma visits to ED
 – Acute MI
 – Ischemic heat disease
 – Heart rhythm and conduction disturbances
 – Cerebrovascular disease
 – Peripheral artery disease
 – Heart failure

<table>
<thead>
<tr>
<th>PM$_{2.5}$ Analysis Datasets</th>
<th>PM$_{2.5}$ Concentration Data Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM$_{2.5}$ Monitors</td>
</tr>
<tr>
<td>“Monitors”</td>
<td></td>
</tr>
<tr>
<td>“AOD”</td>
<td></td>
</tr>
<tr>
<td>“CMAQ”</td>
<td></td>
</tr>
<tr>
<td>“CMAQ-HBM”</td>
<td></td>
</tr>
<tr>
<td>“AOD-HBM”</td>
<td></td>
</tr>
</tbody>
</table>
Statistical Analyses

1. Determine accuracy of estimated PM$_{2.5}$ datasets (“CMAQ,” “CMAQ-HBM,” “AOD,” “AOD-HBM”) in relation to “Monitors”
 - 2004-2006 data
 - Does addition of AOD increase accuracy of combined PM$_{2.5}$ dataset?

2. Estimate impact of short-term variations in PM$_{2.5}$ concentrations on health outcomes
 - 2004-2005 data
 - Case-crossover analyses using all 5 PM$_{2.5}$ analysis datasets
 - Comparison of results to Haley et al., 2009 will determine if addition of AOD increases correlation with health outcomes for NYC
Statistical Analyses

3. Determine which estimated PM$_{2.5}$ dataset is most accurate for predicting health outcomes
 - Use results from Stage 2 with logistic regression models to predict health outcomes for 2006
 - *Does addition of AOD increase accuracy of combined PM$_{2.5}$ dataset?*

4. Determine effects of spatial variations in PM$_{2.5}$ across metropolitan scale on health outcomes
 - 2004-2006 data
 - Same as Stage 2 but add spatial location in case-crossover analysis
 - Separate impacts of high PM$_{2.5}$ (downtown) from low PM$_{2.5}$ (rural)
Public Health End-User Programs

If results of feasibility study show value in using HBM to create combined PM$_{2.5}$ datasets including AOD, we will provide results to state/national environmental tracking programs:

- **Maryland Environmental Public Health Tracking (EPHT) Program**
 - Dr. Clifford S. Mitchell, Director of Infectious Disease and Environmental Administration, MDHMH

- **National Environmental Public Health Tracking Network**
 - Dr. Judy Qualters, Chief of Environmental Health Tracking Branch, CDC

- **USEPA Advanced Monitoring Initiative (AMI) for the Baltimore PM$_{2.5}$ Community of Practice (CoP)**
 - Dr. Cynthia Stahl, Environmental Scientist, USEPA Region 3
Acknowledgements

• NASA Public Health Applications Program
• John Haynes and Sue Estes
• Co-Investigators and Collaborators:
 – Stephanie Weber, Battelle
 – Dr. John Braggio, Maryland Dept of Health and Mental Hygiene
 – Thomas Talbot, New York State Dept of Health
 – Eric Hall, USEPA
 – Fred Dimmick, retired USEPA
Example: Correlation between MODIS AOD and PM$_{2.5}$ for Baltimore

\[y = 26.9 \times + 8.2 \]
\[r = 0.77 \]

Baltimore, Maryland
2005
Example: Correlation between MODIS AOD and PM$_{2.5}$ for May 2007 in U.S.

- Correlation varies by:
 - Region and season
 - Vertical aerosol distribution and properties
 - Meteorological conditions such as relative humidity and boundary layer height

- AOD retrievals are less accurate over bright surfaces such as desert or snow

Image generated by Giovanni, NASA GES DISC