Hypothesis and Objectives

- **Hypothesis:** High-resolution land and water datasets from NASA utilities can lead to improvements in simulated summertime pulse-type convection over the S.E. U.S.
- **Experiment objectives:**
 - Use NASA Land Information System (LIS) to provide high-resolution land surface initializations
 - Incorporate SPoRT MODIS composites for detailed representation of sea surface temperatures (SSTs)
 - Demonstrate proof of concept in using these datasets in the Weather Research and Forecasting (WRF) model
 - Provide opportunity to optimize future models

Methodology and Data

- **LIS/Noah 4-km LSM run:** 1/1/2004 to 9/1/2008
 - Same soil and vegetation parameters as in WRF
 - Atmospheric forcing from GDAS + Stage IV analyses
 - Run long enough for soil to reach equilibrium state
 - Output GRIB files initialize WRF land surface variables
- **Bring LIS data into WRF initial conditions:**
 - Modifications to WRF Preprocessing System (WPS):
 - Created Variable LIS: added LIS fields into METGRID.TBL file
 - Soil moisture/tempr, skin temp, anse-water, land-sea mask
 - LIS data over-write NAM land surface data
 - MODIS SSTs over-write NAM / RTG SSTs in WPS

Run parallel WRF simulations

- Once daily 27-h simulations, initialized at 0600 UTC
- 81 total forecasts (Jun – Aug 2008)
- 11 missing dates due to missing/ corrupted MODIS SSTs
- LISMOD: Same as Control, except:
 - Replace land surface data with LIS output fields
 - Replace SSTs with SPoRT MODIS composites

Evaluation and Verification

- Graphical and subjective comparisons
- **Meteorological Evaluation Tools (MET) package**
- Method for Object-Based Diagnostic Evaluation (MODE): object-oriented, non-traditional verification method

Use of MET/MODE for Precip Verification

- **Stage IV analyses used as validation for traditional precip stats and MODE**
- Traditional grid point verification
 - Bias, Threat Score, Heidke Skill Score (HSS)
 - P10, P25, P50, P75, P90

- **MODE object classification**
 - Resolves objects through convolution thresholds:
 - Filter function applied to raw data using a tunable radius of influence
 - Filtered field thresholded (tunable parameter) to create mask field
 - Raw data restored to objects where mask meets/exceeds threshold
 - Attributes computed for “matched” objects

Soil Moisture Comparison: 10 June 2008

<table>
<thead>
<tr>
<th></th>
<th>LIS</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LIS</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary:
- Use of LIS as initial condition for WRF run
- Demonstration of improved performance over traditional methods