Soil moisture measurements and modeling for validating AMSR-E soil moisture and brightness temperatures

Charles Laymon, Bill Crosson, Ashutosh Limaye, Frank Archer National Space Science and Technology Center, Huntsville, AL

Objectives of overall project:

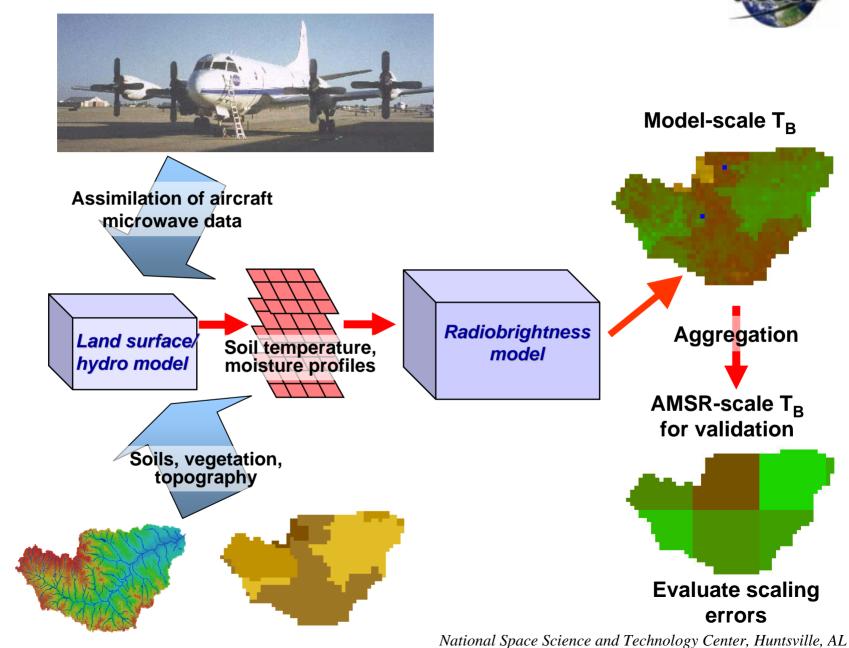
> Provide best estimates of soil moisture and C- and X-band brightness temperatures (T_B) with associated confidence limits to validate AMSR-E products at the footprint scale (~ 50 km) and on the 25 km EASE grid

• Soil moisture and T_B estimates will be generated using a coupled hydrologic/ radiobrightness model with data assimilation from aircraft-borne microwave sensors.

• Validation will be performed using data from regional field experiments such as SMEX '02 in Iowa.

Today's presentation:

Describe validation strategy and models


Present preliminary results comparing AMSR-E C-band T_B with best model estimates

Mohure

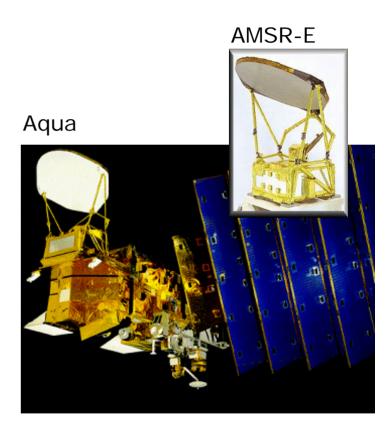
AMSR-E T_B Validation Strategy

MORATION

Advanced Microwave Scanning Radiometer-EOS (AMSR-E)

Sensor Specifications:

Frequency	Polarization	Sensitivity	Mean Spatial	Swath
(GHz)		(K)	Resolution (km)	(km)
6.925	V, H	0.3	56	1445
10.65	V , H	0.6	38	1445
18.7	V, H	0.6	21	1445
23.8	V , H	0.6	24	1445
36.5	V , H	0.6	12	1445
89.0	V, H	1.1	5.4	1445


- 12 channel, 6 frequency conically scanning passive microwave radiometer
- Built by NASDA

Launch:

- AMSR-E launched on Aqua on May 4, 2002
- AMSR launched on ADEOS-II on Dec. 14, 2002

Orbit:

- Sun-synchronous orbit
- Equatorial crossing at 1330 LST for AMSR-E and 1030 LST for AMSR
- Earth incidence angle of 55°

Soil Moisture Experiments in 2002 (SMEX '02)

Location: Near Ames, Iowa Time: 24 June – 13 July 2002

Walnut Creek watershed area:

• ~ 400 km²

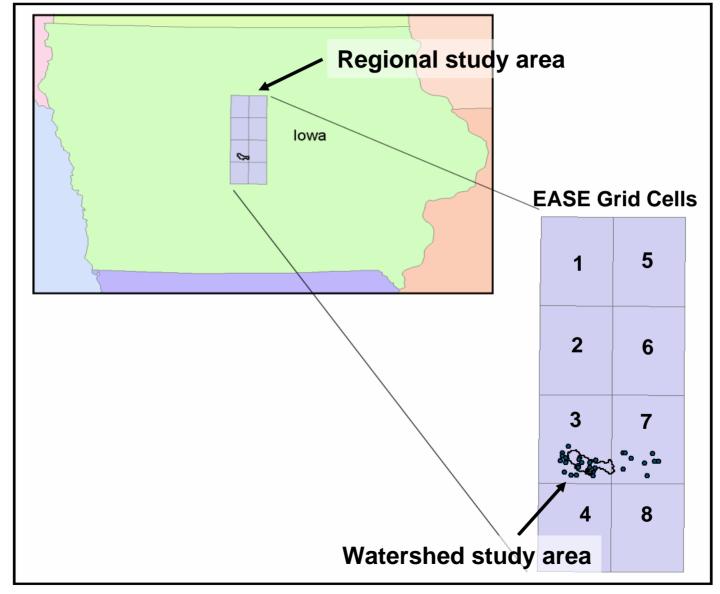
31 ground sampling sites for measuring gravimetric soil moisture, surface and soil temperatures (daily, AM), and vegetation properties (~weekly)
Surface energy flux stations, lidar, and radiosonde measurements

Regional area:

• ~5000 km²

• 48 ground sampling sites for measuring gravimetric soil moisture (daily, PM)

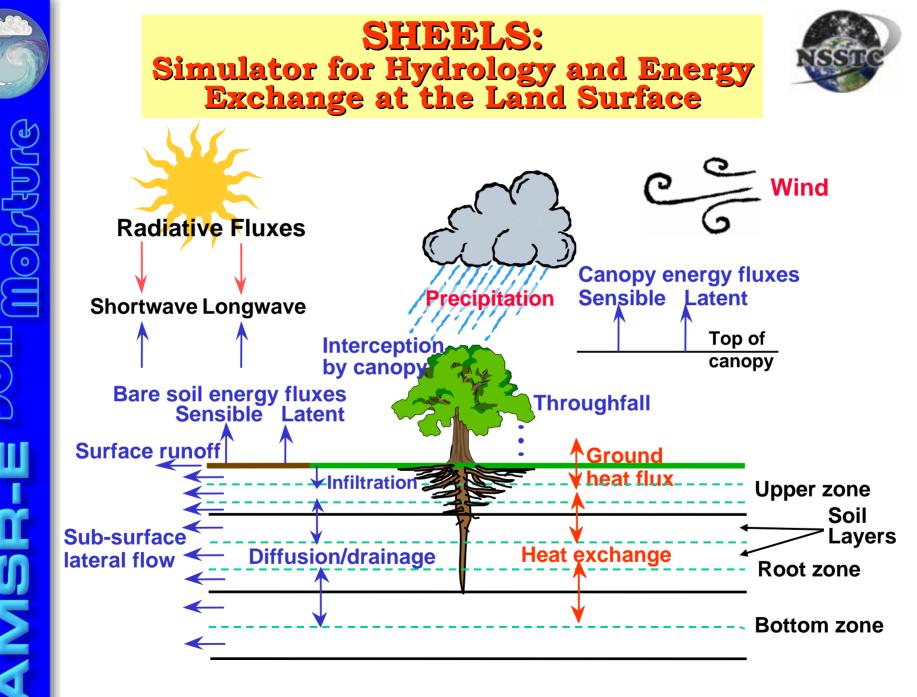
Corn (50% of area)



AMSR-E

EASE Grid Cells in SMEX '02

щ


NN CH

T_B Validation Methodology

Characterize errors in AMSR-E T_B relative to model estimates at the EASE grid scale:

- Tune SHEELS by adjusting soil and vegetation parameters to match the 0-6 cm gravimetric soil moisture at the 31 sampling sites in the Walnut Creek watershed study area
- Tune the RTM by adjusting surface roughness and vegetation parameters to match C-band Polarimetric Scanning Radiometer (PSR) T_B
- Validate AMSR-E C-and X-band T_B at the EASE grid scale within the SMEX '02 regional study area
- \bullet Estimate errors in $\rm T_B$ associated with sampling from footprint measurements to the EASE grid

National Space Science and Technology Center, Huntsville, AL

2

Microwave Radiative Transfer Model

Forward coherent wave radiative transfer model of Njoku and Kong, 1977

- Determines microwave brightness temperatures at given frequencies based on soil moisture and temperature profiles
- Soil moisture and temperature profiles are supplied by SHEELS or *in situ* observations
- Includes parameterizations for effects of surface roughness and vegetation
- Using Dobson dielectric mixing model in this study

HUNK

SHEELS/RTM Modeling Procedure

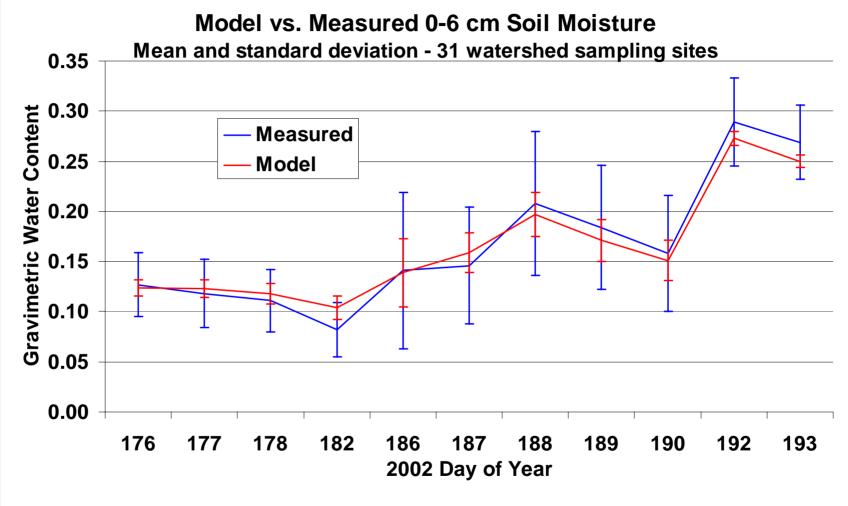
• Initialize soil moisture profile based on antecedent precipitation on day 161 (10 June)

• Run SHEELS at hourly time step, forcing with NWS North Central River Forecast Center Multi-sensor Precipitation Estimates (MPE)

• Other meteorological forcing obtained from USDA Soil Climate Analysis Network (SCAN) site at Ames, Iowa

• SHEELS soil layer configuration:

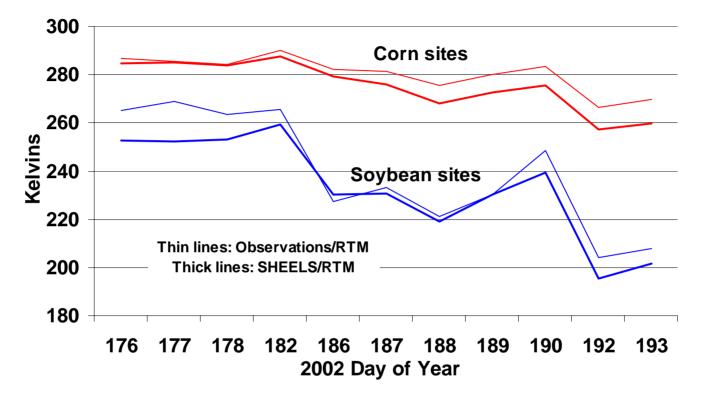
Zone	Thickness (cm)	<u>No. layers</u>
Upper	6	6
Root	94	9
Bottom	50	2


MORTURE

0

SIN

Model vs. Measured Gravimetric Soil Water Content



Gravimetric measurements made each day at ~ 11:00 CDT

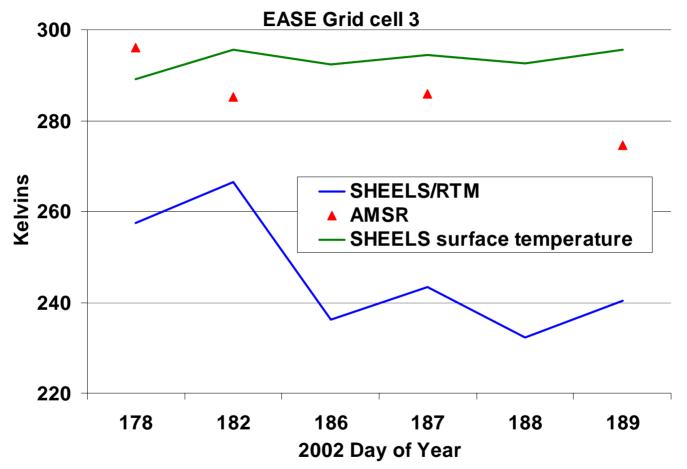
• Excellent overall agreement for mean of all sampling sites

RTM-Estimated C-band T_B Corn and Soybean Sites

- \bullet T $_{\rm B}$ estimated by RTM using soil moisture and temperatures from observations or from SHEELS
- Observations: 0-1 and 1-6 cm soil moisture
- SHEELS: full soil moisture profile

Molylyng

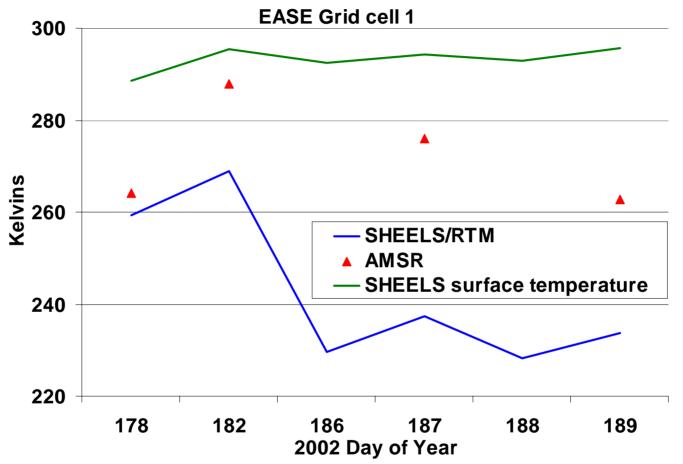
NNS N


- Results are for horizontally-polarized 6.9 GHz frequency at 11:00 CDT
- Values for corn sites are much higher with less sensitivity compared to soybean sites

MORATING

AMSR-E vs. SHEELS/RTM C-band T_B

- Results for horizontally-polarized 6.9 GHz frequency
- Data are for ~ 1:30 AM local time
- Coincident SHEELS surface temperatures are shown for comparison
- AMSR T_B appears to be anomalously high RFI problems?



Molylyng

N N

AMSR-E vs. SHEELS/RTM C-band T_B

- Results for horizontally-polarized 6.9 GHz frequency
- Data are for ~ 1:30 AM local time
- Coincident SHEELS surface temperatures are shown for comparison
- AMSR T_B appears to be anomalously high RFI problems?

ANSB

Summary and Conclusions

- A modeling/data assimilation system is in place to generate 'best estimates' of microwave brightness temperatures and near-surface soil moisture with which to validate AMSR-E data products.
- Uncertainties in these estimates will be estimated using an ensemble simulation approach.
- Model 0-6 cm soil moisture estimates agree well with observations at the watershed scale (400 km²).
- \bullet Model $\rm T_B$ for corn sites are much higher and show lower sensitivity than for soybean sites.
- AMSR-E T_B values for EASE Grid (25 x 25 km) are significantly (up to 40 K) higher than model values for the 4 days analyzed.
- Some of the differences may be due to RFI contamination.