

Available online at www.sciencedirect.com

Remote Sensing of Environment 100 (2006) 133 - 142

Remote Sensing Environment

www.elsevier.com/locate/rse

Estimating accuracy in optimal deconvolution of synthetic AMSR-E observations

Ashutosh S. Limaye*, William L. Crosson, Charles A. Laymon

Universities Space Research Association, NSSTC, 320 Sparkman Dr., Huntsville, AL 35805, United States

Received 2 August 2005; received in revised form 14 October 2005; accepted 15 October 2005

Abstract

Optimal deconvolution (ODC) utilizes the footprint overlap in microwave observations to estimate the earth's brightness temperatures ($T_{\rm B}$). This paper examines the accuracy of ODC-estimated $T_{\rm B}$ compared with a standard averaging technique. Because brightness temperatures cannot be independently verified, we constructed synthetic True $T_{\rm B}$ for accuracy assessment. We assigned $T_{\rm B}$ at a high spatial resolution (1 km) grid and computed the True $T_{\rm B}$ by spatial averaging of the assigned $T_{\rm B}$ to a lower resolution earth grid (25 km), selected to match the resolution of products generated from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). We used the sensor antenna response function along with the 1-km assigned $T_{\rm B}$ to generate synthetic observations at AMSR-E footprint locations. These synthetic observations were subsequently deconvolved in the ODC technique to estimate $T_{\rm B}$ at the lower resolution earth grid. The ODC-estimated $T_{\rm B}$ and the simple grid cell averages of the synthetic observations were compared with the True $T_{\rm B}$ allowing us to quantify the efficacy of each technique. In areas of high $T_{\rm B}$ contrast (such as boundaries of water bodies), ODC performed significantly better than averaging. In other areas, ODC and averaging techniques produced similar results. A technique similar to ODC can be effective in delineating water bodies with significant clarity. That will allow microwave observations to be utilized near the shorelines, a trouble spot for the currently used averaging techniques.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Optimal; Deconvolution; Microwave; Radiometer, AMSR-E; Synthetic